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ABSTRACT

We present a correlation-based algorithm for the agglomerative clus-
tering of atoms in sparse atomic decompositions of audio signals.
Our goal is to demonstrate useful relationships between elements of
the decomposition and the content of the original signal, for such
purposes as analysis and modification. We evaluate the performance
of the agglomeration algorithm using decompositions of synthetic
and real audio signals, and discuss possible extensions of this work.

Index Terms— Clustering methods, signal analysis, signal res-
olution, time-frequency analysis.

1. INTRODUCTION

Methods for sparse atomic decomposition, such as Matching Pursuit
(MP) [1], express a signal as a linear combination of components
selected from an overcomplete and redundant set of finite-support
unit-norm functions called atoms that collectively comprise a dic-
tionary. After n iterations of MP, the representation of the size-M
signal vector x can be expressed as

x = (n) + r(n) = G(n)e(n) + r(n) (1)

where the ith column g; of the size M X n matrix G(n) is an atom
selected from the size M x N dictionary D, ¢(n) is a (column) vec-
tor of the decomposition coefficients, and r(n) is a residual signal
vector. The nth-order approximation of x is a linear combination of
n atoms selected from the columns of D, i.e.,
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Sparse atomic decompositions have been useful for many applica-
tions, such as the analysis of biomedical signals [2], blind source
separation [3], and audio signal coding [4].

One can incorporate a diverse collection of atoms in the dic-
tionary to describe a signal in a more sparse and meaningful way
than using an orthogonal expansion [1]. For example, decompos-
ing a signal using a dictionary of atoms of different scales results in
a multiresolution representation, as opposed to the monoresolution
representation of the short-term Fourier transform (STFT). Figure 1
shows examples of these two types of decompositions. In this paper,
we use a dictionary of real-valued discrete Hann windows that are
scaled, translated, and modulated, as follows:

X(n) =cogo +ci181 + -+ Cn—18n—1.

m — up

gl(m):Klw< )cos(wlmT—l—qSl), 0<m<M-1(Q3)
where w(t) is the Hann window, T is the sampling period, and u;,
si, and w; are the translation, scaling, and modulation parameters,
respectively. The coefficients {K;} are included to scale the dis-
cretized atoms to have unit norm.
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Fig. 1. Portion of a bird call signal in the time-frequency domain
via the STFT (top), and a superposition of the time-frequency tiles
of multiresolution atoms found by MP (bottom).

While the terms in a sparse decomposition of a signal may pos-
sess a higher level structure than those of an orthogonal decomposi-
tion, the significance of each atom with respect to each other, as well
as relative to the content in the original signal, may not be obvious.
For example, in a sparse decomposition of a musical signal, several
atoms may characterize a single harmonic of one note. It is thus not
straightforward how to work with high-level content of a musical
signal (such as notes) via its sparse decomposition. Our goal here is
to find and delimit structures in a sparse decomposition that corre-
spond to specific content in a signal, such that we can rewrite (2) as
a sum of k clusters (k < n) of weighted atoms, as follows:

X(n) = mu(n) + mz(n) + --- + my(n) )

where each molecule m;(n) is designed to have a clearer signifi-
cance with respect to the content of the signal than do the individual
atoms. We present an algorithm for building these molecules which,
in contrast to molecular MP [5, 6], constructs them as a step subse-
quent to rather than during the decomposition. We anticipate that
constructing molecules after the decomposition can provide many
levels of resolution, and it imposes fewer restrictions on the process
of the decomposition.

2. BUILDING MOLECULES
In our approach, each molecule in (4) is built by weighting and ag-

glomerating the columns of G(n) that meet a minimum similarity
criterion. One possible measure of similarity between two unit-norm
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Fig. 2. Two real atoms that have the same modulation frequency and
overlap in time, but differ in phase by 7/2. The sum waveform is
also shown.

atoms g; and g; is the magnitude of their cross-correlation:

ri; 2 gl gil (%)
where the superscript H denotes complex conjugate transpose. For
the real-valued atoms in (3), this measure is obviously sensitive to
their phases. Consider the two example atoms shown in Fig. 2 which
possess the same modulation frequency. Even though we would
judge these atoms to be similar, the phase lag of w/2 yields r =
0.0001, thus showing that (5) is not always a useful measure of sim-
ilarity for real atoms overlapping in time and in frequency. In order
to handle this drawback, the similarity measure can become phase
invariant if the real atoms are first converted to analytic form. This is
achieved for the atoms in (3) simply by replacing the cosine with a
complex exponential. Converting the two atoms in Fig. 2 to analytic
form gives the much higher similarity of » = 0.87.

atom j
012345678 910111213141516171819
oreee eeo oo
1 @ oo o °
2r e o o000 ooo °
3r o o °
4r e o o o o
5¢ °
6f (XN
7r o oo o o o0
_ 8 o o
g 9r ®
g 107 L XX
1} (X o0
12} ° X
131 eooeo
14} (XX
15¢ o0
161 °
17} X
18} o0
19} ]

Fig. 3. Adjacency matrix A (n) denotes pairs of similar atoms (i.e.,
those that exceed the similarity threshold), indicated here by the dots.

2.1. Clustering Algorithm

Using an analytic form for the atoms, the similarity measure in (5)
specifies that two atoms are similar when they sufficiently overlap
in the time-frequency domain. In order to specify this sufficiency,
define the correlation threshold 0 < pmin < 1 and construct the
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Fig. 4. Sorting the columns of G(n) according to the time positions
of the atoms results in a very sparse adjacency matrix A (n).

binary matrix A (n) with entries assigned as follows:

a 1,
A5 = 0

This upper-triangular adjacency matrix [6] specifies which pairs of
atoms exceed the correlation threshold. By traversing the entries of
A (n), the algorithm constructs molecules by agglomerating atoms
that sufficiently overlap in time and in frequency.

Consider the adjacency matrix shown in Fig. 3. For the first
molecule, the algorithm selects all atoms corresponding to the
nonzero entries in the first row of A(n). These are weighted and
added to form the first iteration of the first molecule: m;(1) =
cogo + c1g1 + 282 + cege + -+ + c11g11. Since go is sim-
ilar to g1, the molecule is augmented with new atoms that are
sufficiently similar to g ; these are represented by the nonzero en-
tries in the second row of A(n). The second iteration of the first
molecule thus produces m; (2) mj (1) + cirg17. Since go is
also similar to g2, the molecule is augmented by all new atoms
corresponding to the nonzero entries in the third row of A(n):
mi(3) = mi(2) + cags + ci2g12. This process continues until
no more new atoms are found, yielding the first completed molecule
my; (n). For the second molecule, the process begins with the first
row of A (n) that is not included in the first molecule, which in this
example is the fourth row. The molecule building process continues
in this manner, and terminates when all rows of A (n) have been
considered.

Tij 2 Pmin, 1 <j<n, 1< j ©)

else.

2.2. Sliding Window Implementation

Sparse atomic decompositions of audio signals frequently result in
very large numbers of atoms. Thus, it is generally impractical for the
agglomeration algorithm to calculate and search A (n) for an entire
decomposition. Since the clustering condition is based on the de-
gree of time overlap, we should first permute the columns of G(n)
based on the translation u; of each atom before calculating A (n).
For example, using the Hann atoms in (3), the columns of G(n) are
permuted such that u; increases with each column. This yields a very
sparse adjacency matrix, as illustrated in Fig. 4. The algorithm may



now use a sliding window approach where, for any given molecule, it
looks only K atoms ahead of the first row included in the molecule.
After each molecule is completed, the algorithm updates the adja-
cency matrix using the similarities between new atoms looking at
only K atoms in each step. Obviously, the choice of the window
size is important: if K is too small, molecules may be truncated;
and if it is too large, the computational overhead may be excessive.
However, using a small value for K may not necessarily be a prob-
lem if a post-processing step is used to agglomerate molecules that
themselves sufficiently overlap in time and in frequency. This issue
requires further study.

3. RESULTS FOR REAL AND SYNTHETIC SIGNALS

We decomposed several synthetic signals using an overcomplete dic-
tionary of modulated Hann windows and the MP Toolkit [7]. The
five test signals each consist of 36 Hann-windowed sinusoidal har-
monic tones of duration 0.5 s in an equal-tempered scale built on 440
Hz. For each one of the tones, the amplitude of the fundamental and
the phases of the harmonics are random variables. The harmonics
have amplitudes that decay as A/k, k = 2,...,10, where A is the
amplitude of the fundamental.

Ideally, the algorithm should find molecules in a decomposi-
tion corresponding to the individual harmonics. Each molecule
should have a duration of 0.5 s, and since each test signal consists
of 36 tones with 10 harmonics, the algorithm should find 360 such
molecules. These results will depend, of course, on the value of
the correlation threshold. As pmin increases, we expect to see an
increase in the number of molecules because fewer pairs of atoms
will exceed the threshold, and thus larger molecules will split into
several smaller ones. This should also affect the mean duration of
the molecules, because molecules with fewer atoms will tend to have
shorter durations for these test signals.

Figure 5(a) shows the mean number of molecules found by the
agglomeration algorithm from decompositions of the test signals for
five different signal-to-residual ratios (SRRs), over a range of pmin
values, and using K = 500 atoms. Figure 5(b) shows the corre-
sponding mean duration of these molecules. For SRR &~ 18 dB, the
algorithm finds all the expected molecules with mean durations close
to 0.5 s; listening to the synthesized molecules confirms this result.
For SRR < 18 dB, the mean number of molecules is less than ex-
pected because several harmonics have yet to be extracted from the
signal. Mean molecule durations are slightly longer than expected
at high SRRs because some atoms selected by MP begin before or
end after the corresponding tone. Both of these results are clearly
dependent on whether real or analytic atoms are used to calculate
the degree of similarity. This sensitivity suggests that the decompo-
sitions have many atoms that overlap in time and in frequency, and
are out of phase, perhaps as a means to correct previous atoms.

We also constructed molecules from a decomposition of a bird
call signal (11 s duration). For SRR = 30 dB, MP found 5, 553
real Hann atoms. The agglomeration algorithm employing analytic
atoms with pmin = 0.1 and K = 500 generated 274 molecules com-
posed of ten or more atoms; these represent a total of 3, 612 atoms,
which is about 65% of the original decomposition. Figure 6 shows
nine such molecules built from this decomposition; observe that they
correspond quite well to the harmonic structures of the original sig-
nal seen in Fig. 1. Some of these molecules can be agglomerated
further as well, e.g., {2,6}, {3,8,9}, and {4, 5, 7}, to create larger
structures.
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Fig. 5. Properties of molecules built from decompositions of syn-
thetic signals as a function of the correlation threshold pmin, the
SRR, and the similarity measure r;; in (5) calculated using real
(dashed) and analytic (solid) atoms. (a) Mean number of molecules
found. (b) Mean duration of molecules.

4. EXTENSIONS OF THE ALGORITHM

Due to the multiresolution nature of sparse atomic decompositions,
several variations of the basic molecule building algorithm are pos-
sible. For example, agglomerative clustering could be performed
for multiple SRRs, such that it might first build molecules at a low
SRR, and then make them more precise by including atoms found
at a higher SRR. Different sets of rules could also be specified for
clustering depending on various properties of the atoms. For exam-
ple, the algorithm might combine large-scale atoms differently than
short-scale atoms since, in a musical signal for instance, atoms cor-
responding to transients will be related in a different way than atoms
corresponding to the harmonic content.

A logical extension for the agglomeration algorithm is that
it combine molecules according to frequency. For example, the
molecules shown in Fig. 6 could be agglomerated to represent a
complete “tweet” in the bird call signal. A lower-level represen-
tation could be created by segmenting the “tweet” into parts that
signify the onset, sustain, and release of the sound. Such structurally
meaningful representations can be useful for audio signal analysis,
modeling, and transformation [8].
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Fig. 6. A sparse decomposition of a bird call signal is processed
by the agglomeration algorithm to create molecules corresponding
to the harmonics of the signal, as seen in Fig. 1. Shown here are
nine molecules in the time domain (top) and in the time-frequency
domain (bottom).

In addition to providing an interface between the content of a
signal and its sparse decomposition, molecule building could pro-
vide a way to prune a sparse decomposition without removing sig-
nificant but low-energy structures in the signal. Figure 7 shows a his-
togram of the molecule sizes found in the decomposition of the bird
call signal. Each bar from left to right in each cluster centered about
an integer denotes pmin increasing linearly from 0.001 to 0.1. As
Pmin increases, the number of few-atom molecules increases while
the number of the large molecules decreases. Even at low pmin,
many atoms in the decomposition are not sufficiently similar to cre-
ate large molecules. Thus, a decomposition might be pruned or de-
noised by removing atoms that are not sufficiently similar.

5. CONCLUSION

We have presented, demonstrated, and evaluated an agglomerative
clustering algorithm that makes more explicit the relationships be-
tween some content of a signal and the terms in its sparse atomic
decomposition. The algorithm agglomerates similar atoms into
molecules, where the similarity between two atoms is measured by
the magnitude of their correlation (or that of their analytic equiva-
lents). The end result is a set of molecules that provide an interface
for working with specific content in a signal via its atomic de-
composition at arbitrary levels of resolution. Experimental results
demonstrate that the molecules correspond well with harmonic sig-
nal content, such as the harmonics of individual notes in a music
signal. We also discussed various extensions and applications of this
molecular approach, which we are currently investigating. Future
work will also investigate the similarities and differences between
this post-processing method of molecule building, and that done
during the process of decomposition [5].
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Fig. 7. Histogram of the number of molecules from the decomposi-
tion of the bird call signal, an excerpt of which is shown in Fig. 1.
The molecules were built for SRR = 30 dB using analytic atoms to
calculate the similarity measure.
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