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Abstract—Currently, there is no quantitative way to ascertain phenomenon has been shown to be caused by characteristics
how an overcomplete signal representation describes a signal of the decomposition algorithm, such as greediness, as well
and its features using terms drawn from a dictionary. Though 55 from a lack of similarity between the dictionary functions

sparsity offers a measure of optimality with respect to the . . .
number of terms used, it does not describe how a signal is and structures in the signal [8]. Thus, an overcomplete signal

represented, or how well-suited a particular dictionary is for representation exhibiting high DE in specific regions indicates
describing the signal. Building upon work that investigates a lack of efficiency and physical significance [9].
the interactions between nonorthogonal terms of overcomplete  \We have shown in [8] that the DE associated with a term
signal representations, we define and examinénterference in selected by MP decays exponentially as a function of the
such representations built by an overcomplete method, such as . . . . . -
matching pursuit. This interference comes from a lack of fit teration, and thus it quickly becomes ambiguous for ascribing
between a dictionary and the signal, as well as properties of the SOme value to the significance of that term. Instead, we need
decomposition algorithm itself. Such behavior in a representation to inspect the context of a term of a representation in a
can be detrimental to its efficiency and the “meaningfulness” of way that is independent of the step at which it was selected.
its terms. In this paper, we consider interference as a possible way \y/hile the measures of sparsity and “coherence” [10] are
to gauge such properties of overcomplete signal representations. L ) S

useful for globally describing a representation and a dictionary,

they provide little intuition about how a signal is actually

l. INTRODUCTION represented by the dictionary terms. We intend to explore this

Modeling signals that possess a variety of structures wilty defining and measuring the interference in an overcomplete
an orthogonal set of functions is often not ideal in terms signal representation.
efficiency. Doing so can “dilute” signal features across the After providing a short review of OMs and the concept
transform basis, as occurs, for example, in the expansionadfDE, we define interference and propose a measure of it
a periodic and impulsive signal using a Fourier basis. Oversing the Gramian of part of the representation. We investigate
complete methods (OMs) attempt to address these problemierference analytically and empirically using decompositions
by modeling a signal as a linear combination of terms selectetifour test signals found via MP and a Gabor dictionary. Our
from a redundant and overcomplete set of functions [1]-[4fesults generalize the ideas in [8] for application to the results
Depending on the application, it is often required that thef any OM, and address the ambiguity that arises from using
resulting representation be sparse, efficient, robust to noiB¥ to gauge the physical significance, or “meaningfulness,”
meaningful, and perhaps malleable. of particular terms in an overcomplete representation.

OMs can be seen as a generalization of a signal decompo-
sition using terms drawn from a collection of functions, called
the dictionary, which is specified without a restriction on its Consider akK-dimensional vector spac&x € C* with
orthogonality. When the dictionary is at least redundant (a@d inner product between two vectats, x; € Xy defined
usually is overcomplete), there may exist an infinity of possibf$ (Xi,X;). The (*-norm of x € X is given by |[x||s =
representations for a given signal. Particular strategies have!’x where # denotes conjugate transpose. We want to
been devised to find solutions, such as matching pursuit (M@3pressx as a linear combination of vectors from the set
[1], [2], and basis pursuit (BP) [3]. OMs have proven beneficidld: € Xk : ||d;||2 = 1}, described by the matrix (dictionary)
for, among other things, signal coding and compression [3P, = [di|d2| - |dx]xxn. IN OMs, usuallyN > K, and
[6], and denoising [7]. D is called overcomplete (and redundant) when it contains a

A unique property of overcomplete signal representatioggbset of columns that is full-rank, i.e., it spakig.
is that its nonorthogonal terms “interact” when superposed.For OMs, a solution to the following problem is desired:

In the extreme case, an entire term can disappear—through . . .
destructive interference—in the synthesis, which has led us min{C(s), D(x,r)} subject tox =Ds +r @)
to call the interactions between termark energy(DE). This where C(s) is a cost function of the weights ¢ CV, and

Il. OVERCOMPLETEMETHODS AND DARK ENERGY
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D(x,r) is a measure of distortion. ID is at least complete, 1
then there exists at least omefor which x is represented
exactly, i.e., wheré|r||; = 0.

Compared with decompositions using orthogonal bases,
OMs have higher computational costs. When maximum spar-
sity is required, i.e.C(s) £ [|s|lo (where this pseudo-norm sig-
nifies the number of nonzero entriesshand D(x, r) 2 [Ir|]2,
the solution of (1) is NP-hard [11]. This can be avoided ‘ ‘ ‘
by defining C(s) differently, such asC(s)2||s||; in BP 0 100 o 300 400
[3], in which case a solution can be found using linear P
programming. Other methods, such as MP [1], find solutions#®. 1.  Signalx decomposed by MP and a Gabor dictionary (dilated,

(1) by iteratively minimizing the energy of the residual (error;anslated, and modulated Gaussian functions). Envelopes of individual terms

A 2 . . .(gray lines) of the decomposition show energy preceding the transient, and
D(x,r)=||r||3, and do not consider any cost function. Thige normalized STDE (dark solid line) indicates regions with the most DE.

relaxation of conditions reduces the computational complexity,

but the solutions may be suboptimal with respect to the

maximum sparsity possible. Often, an application does nﬁ} ther_1”\1/ve S?y}tl.” |nFerfe5re§W|ti: the C;Jrrent alpp;))XI_m ation
require the sparsest exact solution to (1). X(n). The relation in (5) is always true only ) 1S an
orthonormal set of nonzero vectors. The magnitude of the

A. Matching Pursuit difference between the left- and right-hand sides of (5) is the
MP iteratively reduces the residual energy at each step BY @ssociated witth,,:
. . ) o _ N ) N )
selec_tmg terms from the dictionary W|thou_t conS|_der|ng a_cost Sn+1) = ’||X(n + 1)”2 _ (||X(n)||2 + \a,f)‘ . (®)
function C(s). In such a case, we work with an intermediate
approximation ofx In a Euclidean vector space this simplifies to [8]

x(n) =H(n)a(n), n=1,2,... 2 En+1) = 2’%}13:;((”)‘ < 2||x|)2A(D @

3/4

Normalized STDE
N

where the matrixH(n) = [hg|hy|- - |h,—1]xxn IS @ per- where0 < A < 1. From this expression, we see that DE
muted subset of: columns selected fronD, and a(n) = quantifies the extent to which the new atdm) is already
[ao, - -.,an—1]T is a vector of the associated coefficients giresent in the current approximatiaitn); and that=(n + 1)

the nth iteration of the decomposition process i not the is bounded by a decaying exponential.

time index of the signal). We refer t0H(n),a(n)} as the  We have investigated various characteristics of DE for audio

representatiorof x. signal representations found using MP [8], and have proposed
MP builds the representation by selecting a dictionary teran short-term measure (STDE) that characterizes how DE is
and its weight as follows: distributed in a representation with respect to the signal itself

[9]. Figure 1 shows an overcomplete representation of a signal

and its STDE. Many terms with support preceding the signal
an = (h,,r(n)) (4) onset contribute to the DE observed around that time. These

terms correct for the greediness of MP in the selection of its

wherer(n) 2x - x(n) is the nth-order residual. Note that first atom (labeled 1). Such behavior is clearly detrimental to

r(0) 2 = %(0) = 0. After updating the representation the efficiency of the representation, as well as to the physical

the new residual is given by(n + 1) = r(n) — a,h,,, and significance of its terms.

the process is repeated until convergence (or some stopping

criteria are satisfied). When the inner products in (3) and (4) I1l. M EASURING INTERFERENCE

are defined as dot products (i-éxz'7xj>éXfIXz'), the new  The phenomenon of DE is related to the lack of fit between a
term and its coefficient minimize the energy of the residudglictionary and the signal, and to the decomposition algorithm
[1]. Variations of MP build the representation differently (se€g], [9]. This suggests that those parts of an overcomplete
e.g., [2], [4]). signal representation that exhibit larger amounts of DE are less
physically significant than other portions. For instance, in Fig.
1, one would be justified in ascribing a low physical signifi-
When the dictionanD is at least redundant, the followingcance to those parts of the representation that contribute most
relationship may not hold for eveny: to the STDE (e.g., the left edge of the signal, and before onset),
~ 2 ||= 2 2 because those parts function more to correct poor dictionary
[1%(n) + anbaf, = [[X()]|; + lan]*. ©) term selections, and the incompleteness of the dictionary at
In other words, the energy “contributed” by the new tdim the signal edge. Thus, DE might provide a measure of the
to the current approximatio®(n) may be more or less than“meaningfulness” of a particular term in a representation.
its actual energya,,|2. If the two sides of (5) differ for some However, sinc&(n+1) is bounded by a decaying exponential,

hn = arg gleag |<d7 I‘(TL)>| (3)

B. Dark Energy in Matching Pursuit
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Fig. 2. Four test signals. (a) Attack. (b) Bimodal. (c) Sine. (d) Gaussian white noise (GWN).

the significance of DE becomes ambiguous after the initiatder of the representation [1], atl’ h;| < 1, the upper-left
iterations. Furthermore, DE only measures the correlation pbrtion of G 4(n) will always be dominant for MP.

the new term with respect to a linear combination of previously

selected terms. We want to understand how a particular terrBn Gramian of the Representation

an overcomplete representation interacts with all other termsyye want to examine how the terms in a representation inter-
and perhaps find and delimit the terms that “correct” aspectsgit separately from the influence of the expansion coefficients

the representation. This requires a measure that is independgit  Toward this end, consider rewriting (9) as
of the decomposition iteration.
Ga(n) = G(n) » A(n) (11)

A. Bxpanding Dark Energy wheree is the Schur product, and we have defined the matrices

Consider a signal and a dictionary defined in a Euclidean

vector space, and anth-order representatiofiH(n), a(n)} G(n) 2 H” (n)H(n) (12)
found using some OM. We may indgce the DE of blneh A(n)éa(n)aT(n)~ (13)
termh,,,_; for 1 < m < n by expanding (7) and evaluating

the following expression: Let A(n) > 0 so that any negative sign from (4) is applied

to the termh,,. Note thatG(n) is the Gramian ofH(n),

(8) and embodies all inner products between the terms of the
representation. As suchG(n) is a nonnegative symmetric
wheree; is a lengthn unit vector with1 in row 5, 1,, is @ matrix, and has been described as being sparse without any
length+n vector of onesp,, is a lengthm vector of zeros, particular structure [1]. The DE for termm of an nth-order
and estimation (n < n) can be induced fronG(n) by summing

Ga(n) édiag[a(n)]HT(n)H(n)diag[a(n)] (9) the firstm — 1 entries of rowm, or of columnm, with each
entry weighted by the associated elements\ifn), which is

=(m) =2 et Galr) o |

On—m+1

where diaga(n)] forms a diagonal matrix from the COMPO-_ o iall ®)
nents of the vectoa(n). Substitutinga(n) andH(n) into (9) Y (S).

yields the following symmetric correlation-type matrix for the A negative element ."G(n.) S|gn|f|es_ that the corresppndlng
(n + 1)st-order representation: pair of terms destructively interfere in the superposition (i.e.,

|lh; + h,||2 < +/2), a positive entry signifies constructive in-

a¢  apa;hlh; - apa,hlh, terference (i.e.||h; +h;||2 > v/2) and a zero entry is obtained
apaiththy a2  ---aia,hTh, only for an orthogonal pair of terms (i.é/h; +h,||> = v2).
Gan+1) = . . . : (10) Clearly, each element d&(n) lies in the rangg—1,1]; and
- T , if there exists|g;;| = |g;:| = [h] h;| = 1 for i # j, then the
@oanhy ho aranhy, by n decomposition algorithm has reselected a term that is already

where ||h;|]o = 1 has been used. Sindd 4(n) depends on present in the representation. The largest magnitude value in
the expansion coefficients, which decay exponentially with ti&(n) that is # 1 is analogous to the coherency value of a
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Fig. 3. A(n) for overcomplete representations of each test signal in Fig. 2. Black denotes a large valye;forhile white signifiesa;a; < 1074

dictionary [10], except here it describ&k(n) and notD. better upper-bound can be found. Considering any dictionary
D of N unique unit-norm columns with a coherency of

A T
The Gramian of H(n) illustrates how the terms of a/'P~ "M% [d; | <1 [10], we see that fon < N
representation interact when combined. If a representation is HDTD - INHF
orthonormal, then clearlg(n) = I,, (sizes identity matrix), d(G(n),1,) < NS <Vip <1
and no terms interfere because (5) is true at everyhis
suggests the following normalized measure for the cumulativéiere equality holds when a representation uses the entire

C. Measure of Cumulative Interference

(15)

interference of a representation: dictionary, and thug|G(N)||r = |[D"D||r. The coherency
of a dictionary thus describes the maximum interference of
A ||G(n) — L, any representation built from it.
d(G(n),1,) = = (14) anyrep
nn —

As long asD is at least complete for some vector space,
where||-||r is the Frobenius norm (i.e||B||% = D |bi;]%). there will always (by definition) exist at least omesuch
This measure can be interpreted as the normalized distancdlat x = Ds. While MP guarantees that the representation
overcomplete representation is from an orthonormal represénbuilds iteratively converges to the original signal, it may
tation. The more interference a representation experiences, tidee (almost surely) an infinite number of iterations to do so
further away it is from an orthonormal representation. If aftl]-[3]. It seems that in such a case, the measure in (14) will
atoms interfere to the maximal extent, which med#é:) tend to zero sincgfj < up < 1, Vi # j. For a dictionary
containsn copies of the same term (positive or negativepf finite size N, however, the denominator in (14) can only
then d(G(n),I,) = 1. This is an impossible outcome forgrow to /N (N — 1), and thusd(G(n),I,,) # 0 for every
MP, and so we can assum&G(n),1,) < 1 surely. A representation built by MP using a finite dictionary that has
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Fig. 4. Gramian oftI(n) of decompositions of the signals in Fig. 2. Negative correlation is black, positive correlation is white, and |grﬁy1_;$ <10~4

any degree of interference. This means that in such a linjit.g., atoms of length 16 are hopped integer multiples of 4
for a finite dictionary, a representation exhibiting interferenceamples). Atoms are modulated by a number of frequencies
is always distinguishable from a representation exhibiting fmsed on their lengths. For instance, atoms of length 16
interference. Future work will determine what happens whesamples can have the following modulation frequendiegs

N — oo in (15) for an infinite dictionary. for [ = 0,1,...,8. For a signalx of length K = 1,024
samples, this dictionary contains a total of 16,870 atoms. Each
IV. COMPUTER SIMULATIONS signal seen in Fig. 2 is decomposed to a signal-to-residual

We now inspect the behavior aA(n), G(n), and the ratio (SRR)201log;,(||x[[2/[[r(n)||2) of 60 dB. This stopping
interference measure in (14) for overcomplete represengditerion yields the following representation orders: 94 for
tions found using MP [12] and a dictionary of unit-normAttack, 63 for Bimodal, 492 for Sine, and 1,467 for GWN.
Gabor atoms (dilated, translated, and modulated truncatedVe calculatedG(n) and A(n) for each representation
Gaussians). The dictionary is designed using atoms ofu8ing (12) and (13), which are shown in Figs. 3 and 4,
different lengths, all powers of two from 4 to 512 samplesespectively. Observe the exponential decay of the expansion
Each atom is translated using hops one quarter of its lengtbefficients a(n), which effectively masks the interactions
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V. CONCLUSION

0.3 Attack 1 In general, OMs have been developed with sparsity in mind,
021 ] and thus emphasize the importance of representing a signal

OAF /T T =9 \ijth the fewest number of terms drawn from a dictionary.

0 : : : : : Sparsity, however, provides little information about how an

g'Z:Bim"\d"‘i/‘/\—/\/\\\ OM represents a signal. In this work, we have sought a way
' to determine how a signal is represented by the dictionary

= 0'; ‘ ‘ ‘ ‘ ‘ terms through inspecting the interactions between them via
E o3fgine ‘ ‘ ‘ ‘ 1  the concept of interference, and using the Gramian of part of
O 02t . the representation.
= oaf : : We have defined interference, proposed a measure of it, and
0 : : : : : evaluated the interference in MP decompositions of four test
0.3rGwN 1 signals. Such a measure could help determine signal structures
021 1 that cause problems in its overcomplete representation, the
0.1 S extent to which a representation is negatively affected by the
% 10 20 3 20 50 60  decomposition algorithm and dictionary, and whether there is

SRR (dB) room for improvement in the representation itself. The broad
goal of this work is to find a mechanism to guide an OM,

such as MP, in modeling the structures present in a signal
that “makes sense” with respect to the given dictionary. The
residual can then be decomposed using a different dictionary

between many terms 6 4 (n). These interactions are clearlyOr method altggether. Future work will mclud_e de_5|gn|ng local
easures of interference that can be used in this way.

seen in every iteration in Fig. 4. It is interesting to note thal
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