
UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Lithe: An object-based audio-graph

framework for spatial composition and

sound design

by

Akshay Cadambi

Project documentation submitted in partial fulfillment for the

degree of

Master of Science

in

Media, Arts and Technology

Committee:

Prof. Curtis Roads (Chair)

Dr. Andrés Cabrera

Prof. Clarence Barlow

January 2017

http://www.ucsb.edu
http://mat.ucsb.edu

Lithe: An object-based audio-graph framework for spatial composition and sound

design

c©2016-2017 Akshay Cadambi

Abstract

by Akshay Cadambi

Over the recent years, content creation in spatial audio has moved away from multi-

channel to object-based approaches, where instead of specifying audio signals for each

speaker channel, audio is created with positional data. This is then rendered to speakers

using one of the many spatial sound rendering techniques (VBAP, DBAP, Ambisonics,

etc.). However, workflows for creating content in such systems are usually ad-hoc and

vary vastly between software, algorithms, and controllers. The unit generator (UGen) is

an abstraction used in MUSIC-N languages to structure and define sound processing as

an interconnected graph. This project will present a novel extension of the UGen graph

for object-based spatial audio. By abstracting spatial position as a continuously varying

signal transmitted along with the audio, we can allow for interconnections between pro-

cessing blocks that exert transformations on both the sound and its spatial information.

This project attempts to define a framework for trajectory processing, while being inde-

pendent of speaker layouts, rendering methods, and compositional motivations. Finally,

this project presents Lithe, a C++ framework to build object-based audio-graphs. It

will also present an proof of concept use-case of this library with a modular synthesis

application called Lithe Modular, as well as a sound installation HIVE.

Acknowledgements

I would like to express my gratitude to my committee Dr. Curtis Roads, Dr. Andrés

Cabrera, and Dr. Clarence Barlow for their guidance toward this project. I would also

like to extend my gratitude to the MAT community including faculty, friends, colleagues,

and alumni, for providing such an inspiring, academically stimulating atmosphere. Fi-

nally, I thank my family for their unceasing support.

vii

Contents

Abstract v

Acknowledgements vii

1 Introduction and Motivation 1

2 Design 5

2.1 Independence from rendering algorithms and speaker layouts 6

2.2 Choosing a coordinate system . 7

3 The Audio Object Signal 9

3.1 Signal Specification . 9

3.2 Usage of Manifolds . 9

3.3 Usage of d-maps . 12

3.4 System Diagram . 12

4 Implementation and Usage 15

4.1 Lithe . 15

4.2 allolithe . 16

4.3 Lithe Modular . 17

4.4 HIVE . 18

5 Implications and Future Work 25

5.1 Implications with regards to compositional domains 25

5.2 Implications for the development of new software 26

5.3 New areas for exploration . 26

5.3.1 Handling spatial distortions . 26

5.3.2 UI Research . 27

5.3.3 Creation of manifolds . 27

6 Conclusion 29

A Lithe Modular Modules 31

A.1 AttenuShifter . 31

ix

CONTENTS x

A.2 LFO . 32

A.3 EchoShift . 32

A.4 EchoDelay . 33

Chapter 1

Introduction and Motivation

The use of space as a musical parameter has existed for many decades now. In instru-

mental music this involved physically positioning the instrumentalists throughout the

concert hall. The invention of the loudspeaker extended this idea into the electronic

medium, where instead of instrumentalists, composers were concerned with the place-

ment of loudspeakers. A notable early example is Varèse’s Poeme Electronique that was

showcased at the 1958 Brussel’s Worlds Fair distributed sounds across 400 loudspeakers

and used switching circuits to orchestrate movement of sounds. Another example is

John Chowning’s piece Turenas where trajectories were based on the Lissajous curves,

and used a custom algorithm [1] to spatialize it over four loudspeakers.

Over time the growing need to make compositions portable, pushed toward the develop-

ment of standard speaker layouts like stereo, quadraphonic, octaphonic, 5.1, 7.1, etc. Of

these, the two channel stereo layout is by far the most ubiquitous. Quadraphonic and

octaphonic speaker layouts, consisting of 4 and 8 speakers respectively, arranged in the

form a ring around the listener. These are more common in electroacoustic music con-

certs and conferences. 5.1 and 7.1 were born out of the needs of cinema industry, where

the 5 and 7 respectively represent the number of channels surrounding the listener. The

‘.1’ represents a separate sub-woofer channel used to reproduce low-frequencies that the

typical speaker drivers could not, owing to its other name – the Low Frequency Effects

(LFE) channel [2]. In all cases, standard speaker layouts allowed composers to compose

and mix in their studio with the expectation that the performance space had the same

speaker layout.

The common assumption with this approach is that the studio and performance space

both have the same similar speaker layouts, acoustics, and dimensions. Any discrepan-

cies between the two in these aspects could result in inaccurate spatial imaging. Further,

once printed, a piece is largely unchanged and any performance of the piece is usually

1

Chapter 1 Introduction and Motivation 2

tied to the speaker layout that it was made with. This approach is generally called the

channel-based approach since the composer composes for a set of speaker channels.

An alternative to this is the object-based or object-oriented workflow. Here, the com-

posers create sounds with positional metadata in a virtual space. Most of these systems

allow for the specification of a spatial trajectory for a sound source using coordinates.

It then uses a rendering algorithm to determine the individual speaker signals needed to

position the sound for a given speaker system. Each sound source together with its po-

sitional metadata is called as an audio object (or sometimes sound object). Examples of

rendering algorithms include DBAP [3], VBAP [4], Ambisonics [5], Wave-field Synthesis

[6], and proprietary technologies like Dolby Atmos [7], DTS:X [8] and Auro 3D [9].

Several software tools [10][11][12][13][14][15][16] currently exist for composing spatial

music using object-based approaches. Fig 1.1 shows a representation of what occurs in

most such tools in order to render a single sound source. The audio signal is produced in

the sound synthesis block and includes of audio processed from a live input, synthesized,

recorded, or any combination of these. The position information associated with the

audio signal is produced by the trajectory generation block. The position and trajectory

information are combined to obtain the audio object. Finally, spatializer takes the audio

object and renders it using one of the many rendering techniques like VBAP, WFS,

Ambisonics etc. In some cases [17] the sound processing and trajectory generation are

made to correlate using an overarching simulation algorithm.

Trajectory generation typically takes place in one of two ways: it is manually via user

input, or algorithmically generated. Some tools allow a hybrid of both these approaches

but lean heavily on one or the other as far as their workflow is concerned. Zirkonium

MKIII [12] allows for trajectories to be drawn using an interface and then allows for

queuing these trajectories as events in the time line. It also allows for algorithmic

control via OSC. Spatium [13] implements interfaces that run simulations of gravitational

forces, pendulum motion, and spring motion to generate trajectories. Spatial Swarm

Granulation [17], is an example where an overarching simulation algorithm informs both

the sound processing and trajectory generation. It uses the boids flocking algorithm to

both generate and position sound grains in space.

Since each software uses a separate workflow, this leads to pieces largely being tied

down to the software that they are made with. E. Lyon [18] talks about the diminishing

returns yielded from exploration of timbre composition in the recent years in comparison

to the early days of computer music and suggests the need for the exploration of spatial

composition. Further, composers often have to re-orchestrate compositions due to the

differing speaker layouts in the venues. From a workflow perspective, it is true that

we’ve reached a point in timbre composition where most Digital Audio Workstations

Chapter 1 Introduction and Motivation 3

Figure 1.1: A general view of the signal flow in an object-based audio rendering
system. The sound synthesis process produces the audio signal, and the trajectory
generation process (GUI or some algorithm) produces coordinate information. The
combined audio+position signal is passed into the spatializer which uses a rendering
method (like VBAP, DBAP, Ambisonics etc.) to produce the individual channel signals.

(DAWS) are capable of recording, synthesizing, mixing, and potentially mastering a

stereo composition with in-the-box tools and plug-ins. A user who is familiar with the

idioms of sound synthesis and processing will be able to achieve similar results in most

DAWs. Additionally re-mixing a piece (timbrally) to acoustically suit different venues is

also achievable with most DAWS. Comparatively in spatial composition, the workflow

incompatibilities between software tools hinders the development of similar idioms and

obviates easy re-orchestration for different venues.

Newer synthesis methods make use of trajectories and spatial information as a means to

explore timbre. Spatial Modulation Synthesis [19] for example uses fast-moving sound

sources affected by Doppler effect to generate FM-like tones. Spatio-temporal gran-

ulation [20] makes use of sound-field recordings to explore both temporal and spatial

information as a way to parameterize grain generation. However, these new methods

exist either as ad hoc or proof of concept implementations [15] since typical DAWs lack

the ability to explore them. Further, there is also a potential range of effects that could

employ cross-adaptive processing between the position and audio allowing for audio to

be modulated based on its spatial position, or trajectories modified based on the real-

time analysis of audio signal. Negrão’s Immlib library [21] is a step in this direction,

Chapter 1 Introduction and Motivation 4

however, workflow limitations in most tools limit the exploration of such effects.

This project will draw inspiration from the unit generator [22], an abstraction that was

introduced in the MUSIC-N languages that is still ubiquitous in sound processing. It will

propose a novel extension of unit generator graph to allow for the processing of audio

objects. It will also attempt to define a framework for spatial position processing that

is independent of the rendering methods, is similar across regular and irregular speaker

layouts, and inherently allows for cross-adaptive processing between audio and position

signals. It will then implement these ideas in the form of a C++ library. It will show

the use cases for such a framework via two projects Lithe Modular and HIVE.

The following chapter will lay out some of the design considerations taken towards the

development of the object-based audio graph. It also discusses the strategy for the

development an abstract representation of spatial position using 2-d manifolds. Chapter

3 specifies the signal specification of the audio object signal, the signal that is passed

between the nodes of the audio-graph. Chapter 4 discusses the implementation of the

object-based audio graph library Lithe, as well as the modular synthesis application Lithe

Modular, and the sound installation HIVE. Chapter 5 presents potential implications

for spatial computer music and points to directions for future work. Chapter 6 presents

a concluding discussion.

Chapter 2

Design

The unit generator (UGen) a concept first introduced in the MUSIC-N languages [22], is

still one of the most widely used abstractions in computer music software today [23]. A

UGen is a basic building block for sound synthesis capable of processing input signals to

produce output signals. Examples include filters, oscillators, adders and multipliers. A

number of fairly simple UGens could be interconnected to design vastly complex sounds.

In the words of to Max Matthews, one of the developers of the MUSIC-N, this allowed

complexity of the program to “vary with the complexity of the musician’s desires” [24].

Figure 2.1 shows a typical UGen graph1 with three UGens.

1The terms audio graph and UGen graph are used synonymously in this document.

Figure 2.1: A typical audio graph comprised of three UGens. The inputs to the
UGens may either be a signal from a prior UGen, or may be static parameters that

influence that UGen’s processing.

5

Chapter 2 Design 6

Several computer music languages and software incorporate the unit generator concept

within their workflows. Examples include CSound [25], SuperCollider [26], ChucK [27],

MAX/MSP [28], PureData [29], and Reaktor. Even in DAWs, where the audio graph

structure is mostly hidden from the user, still follow a UGen-graph based signal flow for

plug-ins, inserts and, side-chained effects.

The concept of UGens share an analog with the world of hardware modular synthe-

sizers, which also rely on the principles of modularity and interconnections to achieve

complexity in timbre or musical structure. With the growing resurgence of hardware

modular synthesizers especially in the Eurorack format2, many new modules have digital

processors capable of advanced DSP, allowing digital techniques like granular synthesis

to take on a hardware interface in a modular form.

However, in order to make this extension of the unit generator generic enough to serve

as a framework for spatial audio, considerations need to be made with respect to spatial

sound rendering techniques, speaker layouts, and co-ordinate systems. The following

two subsections describe these considerations.

2.1 Independence from rendering algorithms and speaker

layouts

Many spatial music performances are acoustically nuanced, and the workflows depend on

the composition, the performance space, and the composer. Some composers take a “set

and forget” approach where a composition, once finished is not modified any further.

Performance in such cases involves pressing the play button. Other composers like Jonty

Harrison, Natasha Barrett, and Curtis Roads employ a technique called live diffusion

[30] where they actively modify aspects of a finished piece during the performance. This

is to better adapt the piece to the space and speaker layout.

Additionally, rendering methods like WFS or Ambisonics work best with specific kinds of

speaker layouts and dictate a certain regularity of arrangement and spacing between the

speakers. WFS [6] for example, requires a regularly spaced array with a hard upper limit

on the distance between adjacent speakers. Others like DBAP function despite irregular

layouts. An example for an irregular layout includes a multichannel sound sculpture

HIVE3 that the author worked on that consisted of speakers pointed divergently outward

from the center at different directions, elevations.

2EuroRack is a hardware modular format introduced by the manufacturer Doepfer
(http://www.doepfer.de/home e.htm)

3This project is further discussed in Chapter 4.4

Chapter 2 Design 7

By making the object-based audio graph independent of both speaker layout and ren-

dering method, it will be able to cater to both regular and irregular speaker layouts

using a similar workflow. It will also allow for the ability to make minute changes or

even completely replace the rendering algorithm without affecting the spatial orchestra-

tion. Since the studio is often acoustically different from performance spaces it allows

the composer to fine-tune the rendering algorithm to better suit an acoustically different

performance space.

2.2 Choosing a coordinate system

A Cartesian system would be an obvious and general way to convey spatial position.

However, it presents several limitations. Unless qualified by additional parameters, a

signal consisting of Cartesian coordinate positions is of unbounded range. Further, it

conveys no information about the expected geometry of movement leaving little room for

signal manipulation and processing. To use a term from information theory, a Cartesian

position signal can be considered as a high entropy signal.

In comparison, lower entropy signal would be in the spherical coordinate system, where

two of the three signals (azimuth and elevation) are of bounded range, and the third

(radial distance) is unbounded. This lowers the entropy because we can expect mod-

ulations in azimuth to occur with a circular geometry and idioms for processing this

signal can be better defined. For example, an elevation signal normally in [−π
2 ,

π
2] can

be ‘compressed’ to a smaller range thereby reducing the height content in the piece.

However, using spherical coordinates to represent trajectories that lie on a flat plane

presents a few hurdles. In general, using a parametric coordinate system like spherical

or cylindrical coordinates ties the composer down to trajectories that are geometrically

similar to the base geometry of the co-ordinate system.

Therefore, in order to best suit modulation and processing idioms that are similar to

those used in audio, it desirable to use a position signal that abstracts away the base ge-

ometry of the coordinate system. Additionally, having a system that is of bounded range

makes it easier to define dynamic range-based processing effects on the signal. These

make it easier to develop UGens that are highly decoupled, yet easy to interconnect,

to be able to process signals similarly despite the geometry of the coordinate system.

The solution chosen for this project is the use of 2-dimensional manifolds because they

can be represented by a set of common local coordinates, but yet can map onto many

different base geometries.

Chapter 3

The Audio Object Signal

This project relies on the abstraction of coordinate as points on a 2-dimensional man-

ifold. The immediately following section describes the specification of the signal, and

succeeding sections further describe the sub-components of these signals and how they

are used.

3.1 Signal Specification

Every sample of an audio object signal contains the following essential components:

Audio : Monophonic audio signal that is associated with this audio object

u : Horizontal coordinate on the manifold’s local coordinate system

v : Vertical coordinate on the the manifold’s local coordinate system

d : Distance parameter projected perpendicular to the manifold surface at (u, v)

u and v are the local coordinates of the 2-dimensional manifold used.

d refers to the distance parameter. The use of this will be further explained in section

3.3.

3.2 Usage of Manifolds

In context of this project, a 2-dimensional manifold can be thought of as a 2-d surface

embedded in 3-d space. Fig. 3.1 shows some examples of familiar manifold surfaces. The

9

Chapter 3 The Audio Object Signal 10

Figure 3.1: A few examples of the manifold surfaces that the (u,v) plane can be
parametrically mapped to: sphere (left), cylinder (right), and torus (bottom)

use of 2-dimensional manifold surfaces as a strategy to abstract coordinate information

is not new in the field of spatial audio. Manifold Interface Amplitude Panning (MIAP)

[31] is a design paradigm by MeyerSound that uses an interface called SpaceMaps that

considers the speaker layout as points on a manifold. It was intended to cater to live-

diffusion as well as stereo diffusion performances [32]. The Immlib library [21] for the

SuperCollider environment uses a technique called parameter field spatialization [33],

where scalar fields defined on manifold surfaces are used as a way to derive sound

synthesis parameters

Manifolds allow differently shaped smooth surfaces to be mapped using a common local

coordinate system consisting of a 2-dimensional euclidean plane with the coordinates

(u, v). Fig. 3.2 shows a (u, v) plane with both u and v in the range [-1, 1] (as implemented

in this project). As an example, mapping a spherical manifold would be as shown below.

The u and v being similar to the longitude and latitude respectively on the earth’s globe:

u[−1, 1]→ azimuth[−π, π]

v[−1, 1]→ elevation[−π
2 ,

π
2]

A mapping function, or a set of mapping functions exist to transform all points on the

(u, v) plane to their respective 3-dimensional Cartesian coordinates of points on the

Chapter 3 The Audio Object Signal 11

Figure 3.2: A (u, v) plane is used to represent the local coordinates of a 2-d manifold.

manifold. In topology, this mapping function is commonly called a chart, and a set of

charts that together describe all points on the manifold is called an atlas.

Dynamic manipulations on these u and v signals result in spatial transformations on

the trajectories of the sound sources. DC shifting results in the trajectory to be moved

to a different location on the manifold1. High frequency signals directly relate to faster

movement, and lower to slower movement. This allows the usage of filters in the spatial

domain as a means for velocity manipulation. Dynamic compression2 can be used to

‘compress’ the span of movement while preserving the overall shape.

Some manifolds wrap around the extremities of the ranges of the u and v signals. In

this case, DC shifting can be applied with a wrap-around to the other extremity of the

range to allow for continuous manipulation. For example, discontinuous signals like a

full range sawtooth wave can create continuous motions when used as the u signal in a

radially symmetric manifold like cylinders and spheres. In this case, simple oscillator

waveforms like sine, saw, triangle result in motions along the circumference of a circle.

Any other trajectories can simply be sampled as a wave table and played back; with

speed of playback relating directly to the speed of motion. Common techniques from tape

music like splicing, varispeed, and reversal, result in truncated trajectories, modulated

velocities, and trajectory reversal respectively. Thus, it is easy to see that with little

1Admittedly, this assumes that the manifold doesn’t contain any inherent spatial distortions. This is
further discussed in Section 5.3.1.

2The only caveat being that care must be taken to apply any DC shifts before compression since
unlike audio signals, u and v signals can contain DC content.

Chapter 3 The Audio Object Signal 12

modification, commonly known audio processing techniques can be re-used in the spatial

realm allowing for simple, yet powerful trajectory generation idioms to develop.

3.3 Usage of d-maps

If one is using a spherical manifold, d can be used as a metric to map radial distance.

By extending this idea further, d can be used to map distance as mapped onto the

perpendicular drawn to the surface of a point on the manifold. Essentially, this can then

be used to map points outside the manifold surface while still keeping object motions

congruent with the geometry of the manifold. Additionally, this allows for very irregular

speaker layouts to operate in a consistent manner.

The following equation gives the vector calculation of a point based on the u, v, and d

taken from the audio object signal.

~P = ~Pm + (N̂ ∗multiplier)

where,

~P is a point to be calculated

~Pm is the point on the manifold obtained from the (u, v) coordinates

N̂ is the unit normal vector to the manifold at point ~Pm

multiplier is the perpendicular distance from the manifold from the d-map function

The d-map is a functions used to obtain the multiplier used in the above equation using

the d value in the audio object signal. An example d-map would be a piecewise linear

map where d in [-1, 0, 1] is linearly mapped to [-a, 0, b]. Then, a d of 0.5 would result

in a multiplier of value −a
2 , and that of -0.5 would be b

2 . Other mapping functions

could be used with different bounds to reach points at different proximities from the

manifold with different, possibly non-linear, response curves. Fig 3.3 shows examples of

piecewise linear, piecewise quadratic d-map function responses. In general, the larger

the multiplier, the further the point is from the surface of the manifold.

3.4 System Diagram

Fig 3.4 shows the system diagram of the proposed object-based audio graph, here called

a Lithe audio graph. It can be compared with Fig 1.1, where the sound processing and

Chapter 3 The Audio Object Signal 13

Figure 3.3: Examples of d-map functions that map from d in [-1, 1] to [-6, 10].
Examples shown here use a piecewise linear and piecewise quadratic model that ensures

that d=0 maps to a multiplier also equal to 0.

trajectory generation are fairly separate processes. Here they occur simultaneously since

the signals that pass between UGens are audio object signals which inherently consist

of audio and positional information.

The final UGen in the audio graph (which will be called the Sink UGen) wraps the

rendering algorithm within it. It takes the speaker layout information as a parameter and

renders the incoming audio objects to the speaker layout by making use of the Manifolds

and d-maps to convert the audio object signal’s position information contained in the

u, v, d signals into Cartesian coordinates. Since all rendering methods are wrapped as

UGens and hence have a common interface, it is easy to switch out one Sink UGen for

another, effectively changing the rendering algorithm.

For most typical surround systems, a radially symmetric manifold like the sphere, torus

or cylinder would be an obvious choice. However, for more unconventional speaker

layouts one may choose more complicated geometries to better suit the speaker layout

or the intended trajectory patterns.

Further, by adding additional metadata that specifies the manifold and d-map to be ap-

plied to the audio object to those already proposed in 3.1, it is possible for audio objects

on different manifolds to be processed by the same graph. These kinds of groupings of

semantically related audio objects allows easier control when working with a very large

number of objects.

Chapter 3 The Audio Object Signal 14

Figure 3.4: System diagram of an object-based audio graph, here called a Lithe audio
graph. Signals passed between UGens are audio object signals consisting of both audio
and positional information. Audio objects are processed as a whole, and the final UGen

in the graph renders this to the actual speaker layout.

Chapter 4

Implementation and Usage

This project is implemented in three distinct parts: Lithe, allolithe, Lithe Modular.

Lithe is a C++ library acts is a framework for creating and processing an object-based

audio graph. allolithe is a module based on Lithe for the AlloSystem framework. And

finally, LitheModular is a proof of concept modular synthesizer inspired application built

using allolithe.

4.1 Lithe

Lithe is a C++ library intended for creating and processing object-based audio graphs.

Lithe has no dependencies other than the C++ STL.

Lithe can be functionally divided into three modules: AudioGraph, Atlas, Utilities. The

AudioGraph module consists of audio graph components implements the graph process-

ing functionality. The Atlas module provides a class interface for defining manifolds and

d-maps. Currently implemented are spherical and torus manifolds. Finally, the Utilities

module consists of classes that provide functions such as topological sorting, signal range

processing, and modulation.

Lithe’s audio graph provides the following classes: Inlet, Outlet, Node, Patcher. Table

4.1 provides further description of these classes. Of these, the Node class is the skeleton

for creating a UGen. It has a processing function that processes the audio object signal

at the inlets to produce the output signals at the Outlets. This processing function is

defined by the user of the library. Every Inlet in-turn triggers the processing function

of the connected upstream UGen, this is common to most pull-based graph processing

architectures like the Jamoma Audio Graph [34]. It uses per-sample processing under

the hood, but can be easily overridden to do buffered processing of audio object samples.

15

Chapter 4 Implementation and Usage 16

Class Description

Inlet Pulls samples from as single connected Outlet. Has an internal single
sample delay that can be enabled by a sorter to allow for feedback.

Outlet Holds samples that result from a Node’s processing function that can
be read by connected Inlets. It can connect to multiple inlets at once,
allowing for ‘fanned’ connections.

Node Consists of Inlets, Outlets, and a processing function that can be defined
by the user of the library. Provides the framework for creating a UGen.

Patcher An interface that is used to connect or disconnect Inlets and Outlets

Table 4.1: Description of some of the classes within the AudioGraph module. The
AudioGraph module consists of components used to build and process the audio graph.

Lithe also provides a class interface for topologically sorting an audio graph using the

Sorter class in order to enable and disable these single sample delays as they seem fit.

Currently implemented is a Breadth First Search (BFS) based sorting algorithm that

traverses a graph from the bottom-up and turns on sample delays on any Inlet that is

connected to a back edge. However, the interface allows for other sorting methods like

Tarjan’s algorithm to sort the graph and process the UGens in a specific order.

Lithe is intended as a core processing framework upon which applications are built and

hence does not implement for interfacing with audio IO, GUI, and other application-level

functionality.

4.2 allolithe

allolithe is a submodule of AlloSystem 1 that depends on Lithe. It wraps many of the

Lithe classes and incorporates the AudioIO, lock-free parameter classes within AlloSys-

tem to allow for easy development of UGen applications. Additionally, it also implements

classes to create a GUI using the GLV 2 library for visualizing the audio graph patching

UGens together in real time.

The main UGen-related classes in allolithe are Module, SinkModule, and InputModule.

Module wraps the Lithe Node class and is essentially the equivalent of a UGen. It also

provides an interface to utilize the lock-free Parameter class from AlloSystem enabling

the control of UGen parameters using GUIs or potentially, OSC-based interfaces over

the network. The SinkModule extends the Module class to provide access the Audio IO

device to write to the speaker channels. A SinkModule is typically where the spatial

sound rendering algorithm is placed. The InputModule is similar to the SinkModule

1AlloSystem [35] is an open-source C++ framework for developing audio visual applications.
2GLV [36] is C++ based cross platform GUI library.

Chapter 4 Implementation and Usage 17

except that it uses the Audio IO device to pull input from an external source (line-in or

microphone) and process it within the audio graph.

In addition to the above classes, it also provides an SoundEngine class that acts as an

audio graph manager. It is able to dynamically spawn new instances of Modules, make

graph connections, maintains a list of all active module instances, and also owns all

the available Manifolds and d-maps that will be used in the graph. Since it provides a

uniform entry point to the entire audio-graph, it can be considered as the starting point

to allow for a distributed processing architecture, like the client-server architecture found

in SuperCollider. Future versions might move this functionality into the Lithe framework

itself.

4.3 Lithe Modular

Lithe Modular is proof of concept application built using allolithe and AlloSystem. It

is intended to be a modular synthesis environment for spatial sound. At it’s core is

the Lithe audio-graph, which is wrapped by the allolithe submodule mentioned in the

previous section.

Figures 4.1, 4.2, 4.3, 4.4 demonstrate some of the functionality of the Lithe audio graph.

The basic interface of the application is shown in Fig 4.1. On the top left are the list

of available modules. On the bottom left is the button to run/stop graph processing,

and finally on the bottom right is the quit button. When a sink module is instantiated,

it shows the speaker layout associated with that sink from the top view. The red

dots indicate the individual speakers. Here we have a sink module with an octaphonic

ring, that uses DBAP as the rendering algorithm. Note that the sink itself has several

parameters (in this case, per-object gains and a master gain), as well as inputs.

While most modules that were used in Lithe Modular like LFOs, AD Envelopes, Clock

Dividers, are common to modular synthesizers, they take on an additional function in

the patch since they are also able to affect trajectories of sound sources. A discussion of

some of the implemented modules can be found in Appendix A.

Lithe Modular was publicly demonstrated in the AlloSphere at Elings Hall, UC Santa

Barbara on January 13th 2017. The AlloSphere’s audio system [37] consists of 54 speak-

ers arranged at three different elevations and pointed inward through the surface of a

sphere. It was possible to move sounds both below and above ear level as well as around

the audience.

Chapter 4 Implementation and Usage 18

Figure 4.1: The interface of Lithe Modular. Here we have a sink module which uses
DBAP as the rendering method for an octaphonic speaker layout.

4.4 HIVE

allolithe was also used in the project HIVE as the core sound generation algorithm.

HIVE is a sculptural sound installation that uses 16 channels of audio with embedded

speakers pointed outward from the center. Each speaker points at a different direction

at three different elevations. Adding to the complexity, an additional quadraphonic

speaker system was placed external to the sculpture in the four corners of the room with

the intent to provide a foreground-background dichotomy in the soundscape that was

emitted by the sculpture. Figure 4.6 shows they top view of the installation.

All the sounds used were taken from recordings, and then manipulated and spatialized

using modules similar to those used in Lithe Modular. This was approached using a

spherical manifold, with the radius that is halfway between the sculpture and the exter-

nal quadraphonic setup. By selecting a piecewise linear d-map, positive d values resulted

in sounds projected from the sculpture and negative d values on the quadraphonic setup.

This proved to be an easy and effective way to control call and response-like sonic events

Chapter 4 Implementation and Usage 19

Figure 4.2: When an inlet is connected to something, the sink module automatically
draws that object in its position. In this case it is a static object mapped to a spherical
manifold currently at zero azimuth (u = 0). Here we have the SineGrain module, a

grain generator that generates grains at a specified rate from a 1000Hz sine wave.

between the sculpture and its “environment” (i.e., the quadraphonic system). Further,

audio input was taken from piezoelectric sensors placed under the carpets in the space.

This was then used with onset detection modules to trigger envelopes that modulated

various other modules that modulated the trajectories of the sound sources. This added

an additional dimension of interactivity to the installation allowing the audience to affect

the soundscape of the installation by walking around the space.

HIVE3 was conceived in collaboration with Şölen Kıratlı and was shown from December

1st to 11th, 2016 in Studio F at the Santa Barbara Center for Art Science and Technology

(SBCAST), Santa Barbara, CA. It was created in association with Prof. Yon Visell and

the Re-touch Lab, and was also partly funded by the Interdisciplinary Humanities Center

(IHC).

3More information can be found here: akshaycadambi.com/hive

Chapter 4 Implementation and Usage 20

Figure 4.3: An sawtooth LFO that modulates the u of the SineGrain module to
produce circular motion with a rotational speed of 3Hz

Chapter 4 Implementation and Usage 21

Figure 4.4: Side view of the speaker layout with two LFOs modulating the SineGrain
module. The first one modulates the u with a sawtooth wave to produce circular motion.
The second one modulates the v with a sine wave to move the object up and down the

surface of the sphere.

Chapter 4 Implementation and Usage 22

Figure 4.5: HIVE is a sound sculpture with cavities that contain speaker drivers on
the inner end. 16 channels of audio with speakers pointed outward from the center.
Each speaker points at a different elevation and direction. The numbers in bottom

figure show the positions of the speakers

Chapter 4 Implementation and Usage 23

Figure 4.6: The installation at SBCAST Studio F. The HIVE sculpture was placed in
the center and four external speakers placed in a quadraphonic setup. The sculpture’s
16 speakers projected outward in all directions, and the quadraphonic setup projected
inward toward the center. As the audience walks around in the space, they affect the

piezo sensors placed in the carpets which triggered sonic and spatial events.

Chapter 5

Implications and Future Work

5.1 Implications with regards to compositional domains

Due to the position signals being abstracted and being bounded in range, this opens up

a wide range of primarily timbre oriented effects and techniques to be reinterpreted into

the spatial domain. discussed in Appendix A. Effects used in timbre composition like

gates, compressors, oscillators, filters, etc. can be reinterpreted in the spatial domain

adding a sense of familiarity while still being open for experimentation.

In hardware modular synthesizers, a notion that “everything is a voltage” exists – pa-

rameters are all treated in the same manner and can be modulated by any other signal.

This makes it possible to obtain an infinite number of interconnections and combina-

tions between modules. This project has a similar notion since all position signals are

of the same bounded range (in this implementation, [-1, 1]), infinite cross manipulations

between position signals are possible.

Finally, it also opens up the potential to re-interpret known compositional ideas into

the spatial domain. For example, Clarence Barlow’s Harmonicity formula [38] primarily

used for tuning, temperament, and note-selection can be used to inform the frequencies

of oscillators of multiple sound objects to explore notions spatial harmony and dishar-

mony1. Further, approaches like per-grain effects in granular synthesis could be spatially

informed using scalar fields defined on manifolds. Newer implementations could port the

Immlib library [21] to facilitate this kind of parameter automation.

1Although, since one would probably prefer lower frequency oscillators for trajectories, a more ap-
propriate term might be rhythm. However, certain techniques like SMS [19] make use of audio-rate
trajectories.

25

Chapter 5 Implications and Future Work 26

5.2 Implications for the development of new software

As discussed in Chapter 1 many tools, while providing a platform for creating object-

based content, don’t completely unify sound processing and trajectory generation within

the same workflow. Having a common processing architecture potentially opens up a

space for object-based plug in standards similar to the existing standards for audio plug-

ins like VST, AAX, Audio Units, and JSFX. This allows for a user to extend their own

software’s functionality without drastically modifying to the software itself.

In addition to new plug-in formats, this workflow also points toward the refinement of

the development efforts toward object-based audio formats like SpatDIF [39]. Since all

position information is interpreted as signals in the Lithe audio graph, an audio object

signal can, in its simplest form, be stored as a 4 channel wave file. One possible use case

would be to allow for the storage of atlases and d-maps as a part of the file allowing

for better portability, while still leaving the possibility to edit and modify audio scenes.

Having a generic container format also paves the way for Digital Audio Workstations to

be developed for inherently object based workflows. Further, since this uses the concept

of a unit generator, such DAWS would inherently be compatible with non-object based

content as well.

Finally, as a future work is to extend this audio graph to be able to process an object

group. This is when UGens are able to process complete sets of object in similar manner.

This can be seen as an extension of multi-channel processing to be able to control

large groups of semantically related sound sources. Since each sound source has its

individual position information, any UGen that applies effects based on position will

produce heterogeneous results from a monolithic interface.

5.3 New areas for exploration

5.3.1 Handling spatial distortions

One of the drawbacks of using an abstracted coordinate system like the (u,v) coordinates

of a manifold, is that spatial distortions that result of the mapping function aren’t

apparent while working within the (u, v) coordinate space. With the example of a

globe, the latitude circles have a smaller radius as we get closer to the poles. In other

words, the apparent dynamic range that u is mapped to changes depending on the v

value. This is why most Mercator projections of the globe distort the size of continents

the closer they are to the poles.

Chapter 5 Implications and Future Work 27

This may be desired in some cases, manifolds like spheres and toruses are fairly intuitive

to navigate despite these distortions. In other cases, with more irregular manifolds, it

may be pertinent to investigate the representation as well as workflows that better char-

acterize these distortions and how they affect the trajectory. This may be approached

along two different vectors: one in the realm of UI design, and the other in re-defining

the mapping functions and (u, v) space itself such that the distortions are obvious even

in a waveform representation.

A different aspect of this is the creation of UGens that use spatial distortions to create

velocity based effects, for example, UGens that modulate the velocity of an object based

on the expansion and contraction of space due to the distortions in the manifold. This

can be thought of similar to Kepler’s second law of planetary motion where planet’s

velocity of changes such that the rate of change of area of a line connecting one of the

foci to the planet is zero.

5.3.2 UI Research

In a time-line view, audio is commonly represented as a waveform, and event based

signals like MIDI have been represented using a piano roll view. Since this project

suggests the representation of position signals using abstract coordinates, a waveform

based approach may not be sufficient. Most tools discussed in Chapter 1 have a live

animation view which is not ideal for viewing a time-line of an audio object. Some tools

like Zirkonium MK3 [12] have a time-line view for events representing trajectories but

these are limited to top-view of trajectories and are not extensible to irregular speaker

layouts.

Typically the primary functions while using a time-line view is to be able to chop,

edit, fade, and stitch audio clips. There is an avenue for investigating UIs that best

represent trajectories in a time-line view to allow for these kinds of manipulations on

the trajectories. Ideas from UIs of popular 3D-animation software could be considered

as a starting point for these investigations.

5.3.3 Creation of manifolds

Currently this project allows for manifolds to be defined mainly using parametrically

defined shapes. Since an atlas is a collection of mapping functions that together cover

an entire manifold, a non-parametrically defined manifold can easily be segmented into

multiple mapping functions in order to fully define it. Extending this idea further,

Chapter 5 Implications and Future Work 28

mapping functions can extracted from spatially sampling 3-D models thereby allowing

for any2 irregular shape to be used as a source for manifolds.

While the use of very irregular manifolds in the context of spatial composition requires

some study, this nevertheless provides a vehicle for composing spatial pieces based on

movements from architecturally derived forms modeled in software. The author’s col-

laboration on the project HIVE mentioned in 4.4 was conceived with this in mind. The

object itself was parametrically modeled in software and then physically realized using

3-d printing. Hence, instead of using simple manifolds like spheres and toruses, one may

be able to obtain manifolds that better conform to the shape of the object to potentially

achieve a tighter sonic-spatial relationship.

2With reasonable mathematical limitations.

Chapter 6

Conclusion

While there are several tools to create content using object based audio, the workflows

vary vastly between them. This puts limitations on the portability of compositions,

the types of speaker layouts that can be used, and the scope of interfaces to create

trajectories for sound sources. The project presented here builds on the ubiquitous unit

generator concept as a way to structure spatial compositions. Further by abstracting

the representation of position as a point on a 2-dimensional manifold, it suggests a

generic workflow for spatial trajectory processing that is compatible with both regular

and irregular speaker layouts, while being independent of the rendering methods used.

These design considerations were then used to build the C++ software library Lithe

that allows for the construction of object-based audio graphs. This library was used

in a proof-of-concept modular synthesis application Lithe Modular to demonstrate the

potential uses of this workflow. Several modules were developed and shown in the

context of manipulating spatial trajectories, noteworthy are two hybrid delay modules

(mentioned in Appendix A) that have the ability to manipulate spatial and temporal

aspects of a sound source with relation to each other. Lithe was also used in the sound

installation HIVE – a sculptural sound installation – as the core sound generation system,

showing the use of the same workflow irregular and non-conventional speaker setups.

Finally, a discussion on the potential future prospects of an object-based audio graph

processing architecture for spatial audio were discussed, highlighting areas of potential

exploration in terms of UI design, software design, as well as composition.

29

Appendix A

Lithe Modular Modules

This chapter discusses some noteworthy modules that were built as a part of Lithe

Modular. Obviously, the possibilities in the design space for object-based modules are

endless, but hopefully these would go to show the potential usefulness of an object-based

audio processing architecture.

A.1 AttenuShifter

The AttenuShifter module is a multi-component attenuator, inverter, DC shifter. It

takes a single audio object and outputs a single audio object. It has four parameters:

Attenuation, DC Shift Amount, Component, and Wrap. The Component is used to

select which component of the coming audio object signal should be affected. It currently

ranges from 0-3, representing the four components of the audio object signal1. The

Attenuation attenuates the selected component by the specified amount. It also allows

for negative attenuations (i.e., functioning as an inverter)2.

The DC Shift shifts the attenuated signal by the specified amount and allows for full

range positive and negative shifting. Since this has the potential to shift the signal out

of range, the Wrap specifies how to handle this. Wrap is a boolean that takes a value

of either 0 or 1. If set to 0, it hard clips any sample value that goes out of range to the

corresponding range maximum or minimum. If set to 1, it wraps any value that goes

out of range to the opposite side of the range. For example, if the range was [-1, 1], then

a value of 1.4 would be wrapped to -0.6.

1From a UI design standpoint, this is a less than ideal way to specify the component. However given
that this is a proof of concept and a prototype, it was sufficient.

2In many Eurorack hardware modular systems, this type of attenuator-inverter functionality is com-
monly called an Attenuverter

31

Appendix A Lithe Modular Modules 32

Figure A.1: A prototype UI of the AttenuShifter module. This module is capable of
attenuating, inverting, DC shifting. It allows for ‘voltage’ control of attenuation from

the second input allowing it to also function as a VCA.

The second input of the AttenuShifter can be used for ‘voltage’ control of the attenuation

amount. It takes the audio component of any incoming audio object connected to this

input and uses that to set the attenuation value. The UI setting for attenuation is

ignored and overridden if anything is connected to this inlet. Thus, this allows the

AttenuShifter to also behave as a Voltage Controlled Amplifier (VCA).

A.2 LFO

The Low-frequency Oscillator (LFO) is not unlike commonly available low-frequency

oscillators and is able to produce sine, saw, triangle, and square waves at frequencies

ranging from 0-150 Hz. However, it has the additional ability to attenuate and DC shift,

and wrap its output. These additional functions allow for spatial manipulations when

used to modulate the u, v, and d parameters of another audio object.

If for example a spherical atlas were used, modulation of the u would result in motions

that are along the circumference of the azimuthal circle. A sawtooth wave would result in

continuous circular motions; a triangle wave would result in back and forth oscillations

along the circumference, and a sine wave would be similar to a triangle wave except

that it slows down toward the extremities of the oscillation. Attenuating any of these

waveforms would reduce the span of movement from the full circumference, to a small

section of it. DC shifting it would center this attenuated movement to other locations

on the circumference.

A.3 EchoShift

The EchoShift module is an echo module with multiple cascaded delay lines. It takes

a single audio object input and produces multiple echoes of the original. Figure A.3

shows the prototype UI of the module with four outputs. The first output is the original

Appendix A Lithe Modular Modules 33

Figure A.2: A prototype UI of the LFO module. It has added attenuation and DC
shifting functionality to allow it to be used for trajectory modulation.

Figure A.3: Prototype UI of the Echoshift module with four outputs. It takes a single
audio object as an input and produces four successive echoes of specified delay length.
The u, v, and d, are also shifted successively from the first output to the fourth creating

a cascaded spatial arrangement of the echoes.

object passed through without any modification. The second output’s audio component

is delayed according to the value specified in DelayLength. Further, the u, v, and d,

components are DC shifted by their specified values. The third output is a similarly

delayed and shifted version of the second, and so on. Additionally, each successive

echo can be attenuated from the previous using the fadeout gain, and the level all the

outputs can be simultaneously set using the master gain. Figure A.4 shows the signal

flow diagram of the cascaded delay line used.

Any trajectories and movement in the incoming audio object will cause the echoes to

move in a similar, but shifted fashion. Using this, is possible to spread the sources out

spatially, with a short delay length to create a perceptually wide sound source. It is also

possible to increase the time delay in order to perceive each echo as a discrete event to

create a call and response sort of arrangement.

A.4 EchoDelay

The EchoDelay module is similar to the EchoShift module presented in A.3 except that

instead of shifting the u, v, and d signals, they are delayed in a similar cascaded manner

Bibliography 34

Figure A.4: Signal flow diagram representing the cascaded delay lines used. Note
that this figure represents the signal flow of only the audio within audio object signal.

Figure A.5: A prototype UI of the EchoDelay modules with four delays, one for each,
audio, u, v, and d. It produces four outputs with each successive output delayed from

the previous output by the specified amount on each component.

as the audio. This allows for large spatio-temporal manipulation of a moving audio

object within a simple parameter space.

For example, with smaller but similar delays on the u, v, d signals, it is easy to get a

trail of echoes behind the movement of the input object. WIth larger delays relative to

the velocity of motion, the locations of the echoed audio objects start to spread out more

and more in space. Manipulating the audio delay in either case can shift the perception

from spatialized comb filtering effects, large wide sources, room effects like slap-back, to

wide bundles of echoes and repetitions. With dissimilar delays on the u, v, and d signals,

the spread of sources can be even less correlated to the motion of the input object.

It is also worth noting that the output objects can be further processed both sonically and

spatially by other modules in the audio graph increasing the possibilities to orchestrate

the resultant spatial textures.

Bibliography

[1] John M Chowning. The simulation of moving sound sources. Journal of the Audio

Engineering Society, 19(1):2–6, 1971.

[2] Tomlinson Holman. Surround sound: up and running. CRC Press, 2014.

[3] Trond Lossius, Pascal Baltazar, and Théo de la Hogue. Dbap - distance-based

amplitude panning. In ICMC, 2009.

[4] Ville Pulkki. Virtual sound source positioning using vector base amplitude panning.

Journal of the Audio Engineering Society, 45(6):456–466, 1997.

[5] David G Malham and Anthony Myatt. 3-d sound spatialization using ambisonic

techniques. Computer music journal, 19(4):58–70, 1995.

[6] Augustinus J Berkhout, Diemer de Vries, and Peter Vogel. Acoustic control by wave

field synthesis. The Journal of the Acoustical Society of America, 93(5):2764–2778,

1993.

[7] Dolby Laboraories Inc., . URL https://www.dolby.com/us/en/brands/

dolby-atmos.html.

[8] DTS Inc., . URL http://dts.com/dtsx.

[9] Auro Technologies N.V. URL http://www.auro-3d.com/system/concept/.

[10] Thibaut Carpentier, Markus Noisternig, and Olivier Warusfel. Twenty years of

ircam spat: looking back, looking forward. In International Computer Music Con-

ference, pages 270–277. The International Computer Music Association, 2015.

[11] Jens Ahrens, Matthias Geier, and Sascha Spors. The soundscape renderer: A unified

spatial audio reproduction framework for arbitrary rendering methods. In Audio

Engineering Society Convention 124. Audio Engineering Society, 2008.

[12] Chikashi Miyama, Götz Dipper, and Ludger Brümmer. Zirkonium mk iii-a toolkit

for spatial composition. Journal of the Japanese Society for Sonic Arts, 7(3):54–59.

35

https://www.dolby.com/us/en/brands/dolby-atmos.html
https://www.dolby.com/us/en/brands/dolby-atmos.html
http://dts.com/dtsx
http://www.auro-3d.com/system/concept/

Bibliography 36

[13] Rui Penha and J Oliveira. Spatium, tools for sound spatialization. In Proceedings

of the Sound and Music Computing Conference, 2013.

[14] Thibaut Carpentier. Panoramix: 3d mixing and post-production workstation. In

Internaltional Computer Music Conference. The International Computer Music As-

sociation, 2016.

[15] Muhammad Hafiz Wan Rosli and Andres Cabrera. Angkasa: A software tool for

spatiotemporal granulation. In International Symposium on Computer Music Mul-

tidisciplinary Research, University of São Paulo, Brazil, 2016.

[16] Jean Bresson. Spatial structures programming for music. In Spatial Computing

Workshop (SCW), pages 1–1, 2012.

[17] Scott Wilson. Spatial swarm granulation. In International Computer Music Con-

ference. The International Computer Music Association, 2008.

[18] Eric Lyon. The future of spatial computer music. 2014.

[19] Ryan McGee. Spatial modulation synthesis. In International Computer Music

Conference. The International Computer Music Association, 2015.

[20] Muhammad Hafiz Wan Rosli and Curtis Roads. Spatiotemporal granulation. In

International Computer Music Conference. The International Computer Music As-

sociation, 2016.

[21] Miguel Cerdeira Negrao. Immlib-a new library for immersive spatial composition.

In Proceedings of the Sound and Music Computing Conference, 2014.

[22] Max V Mathews, Joan E Miller, F Richard Moore, John R Pierce, and Jean-Claude

Risset. The technology of computer music, volume 9. MIT press Cambridge, 1969.

[23] Julius O Smith III. Viewpoints on the history of digital synthesis. 1999.

[24] C. Roads and Max Mathews. Interview with max mathews. Computer Music

Journal, 4(4):15–22, 1980. ISSN 01489267, 15315169. URL http://www.jstor.

org/stable/3679463.

[25] Richard Charles Boulanger. The Csound book: perspectives in software synthesis,

sound design, signal processing, and programming. MIT press, 2000.

[26] James McCartney. Supercollider, a new real time synthesis language. In Inter-

national Computer Music Conference, pages 257–258. The International Computer

Music Association, 1996.

http://www.jstor.org/stable/3679463
http://www.jstor.org/stable/3679463

Bibliography 37

[27] Ge Wang and Perry Cook. Chuck: a programming language for on-the-fly, real-

time audio synthesis and multimedia. In Proceedings of the 12th annual ACM

international conference on Multimedia, pages 812–815. ACM, 2004.

[28] Miller Puckette. Combining event and signal processing in the max graphical pro-

gramming environment. Computer music journal, 15(3):68–77, 1991.

[29] Miller S Puckette. Pure data: another integrated computer music environment.

1997.

[30] Jonty Harrison. Sound, space, sculpture: some thoughts on the what,howand whyof

sound diffusion. Organised Sound, 3(02):117–127, 1998.

[31] Zachary Seldess. Miap: Manifold-interface amplitude panning in max/msp and pure

data. In Audio Engineering Society Convention 137. Audio Engineering Society,

2014.

[32] Enda Bates. Spacemaps, manifolds and a new interface paradigm for spatial music

performance.

[33] Miguel Negrao. Parameter Field Spatialization: The development of a technique

and software library for immersive spatial audio. PhD thesis, Queens University

Belfast, February 2016.

[34] Timothy Place, Trond Lossius, and Nils Peters. The jamoma audio graph layer.

In Proceedings of the 13th International Conference on Digital Audio Effects, pages

69–76, 2010.

[35] AlloSystem. URL https://github.com/AlloSphere-Research-Group/

AlloSystem.

[36] Graphics Library of Views (GLV). URL https://github.com/

AlloSphere-Research-Group/AlloSystem.

[37] Curtis Roads Andres Cabrera, JoAnn Kuchera-Morin. The evolution of spatial

audio in the allosphere. Computer Music Journal, 2017 (forthcoming).

[38] Clarence Barlow. On Musiquantics. University of Mainz, 2012.

[39] Trond Lossius. Controlling spatial sound within an installation art context. In

Proceedings of the International Computer Music Conference, 2008.

https://github.com/AlloSphere-Research-Group/AlloSystem
https://github.com/AlloSphere-Research-Group/AlloSystem
https://github.com/AlloSphere-Research-Group/AlloSystem
https://github.com/AlloSphere-Research-Group/AlloSystem

	Abstract
	Acknowledgements
	1 Introduction and Motivation
	2 Design
	2.1 Independence from rendering algorithms and speaker layouts
	2.2 Choosing a coordinate system

	3 The Audio Object Signal
	3.1 Signal Specification
	3.2 Usage of Manifolds
	3.3 Usage of d-maps
	3.4 System Diagram

	4 Implementation and Usage
	4.1 Lithe
	4.2 allolithe
	4.3 Lithe Modular
	4.4 HIVE

	5 Implications and Future Work
	5.1 Implications with regards to compositional domains
	5.2 Implications for the development of new software
	5.3 New areas for exploration
	5.3.1 Handling spatial distortions
	5.3.2 UI Research
	5.3.3 Creation of manifolds

	6 Conclusion
	A Lithe Modular Modules
	A.1 AttenuShifter
	A.2 LFO
	A.3 EchoShift
	A.4 EchoDelay

