
UNIVERSITY OF CALIFORNIA

Santa Barbara

Aether

Real-time Recovery and Visualization of Deleted Tweets

A Project submitted in partial satisfaction of the requirements

for the degree of Master of Science in Media Arts & Technologies

by

Pehr Lorand Hovey

Committee in charge:

Professor George Legrady, Chair

Professor Lisa Jevbratt

Professor Alan Liu

June 2010

The project of Pehr Lorand Hovey is approved.

 George Legrady, Committee Chair

 Lisa Jevbratt

 Alan Liu

June 2010

 iii

Aether

Real-time Recovery and Visualization of Deleted Tweets

Copyright © 2010

by

Pehr Lorand Hovey

 iv

ACKNOWLEDGEMENTS

Working with a topic that spans multiple disciplines can be a daunting task. My

project committee was instrumental in helping me approach the topic from multiple

angles. Professor Legrady continually pushed me to improve the visual component;

which greatly increased the clarity and impact. Professor Jevbratt helped me consider

protocols as art, and how the behind the scenes data systems are just as important as

the visual product. Professor Liu provided a digital humanist perspective on the data

analysis and supported me on the RoSE project, which gave me the programming

experience necessary to make this all happen.

I owe thanks to Larry Zins for providing network support to get my system online

and serving data to the world. Allison Schifani and Dana Solomon helped start all

this Twitter stuff when we worked together on the Urban Sensorium project in

Professor Liu’s Literature Plus class. Karl Yerkes helped me consider how the users

would feel about machines breaking social contracts, an interest we share. Ali Van

Dam helped proofread and put up with the never-ending stream of deleted tweets on

my screen.

Finally, I am grateful to my parents for sewing the seed of graduate education by

sending me to undergraduate and encouraging me to explore my passions.

 v

ABSTRACT

Aether

Real-time Recovery and Visualization of Deleted Tweets

by

Pehr Lorand Hovey

 Aether is an exploration of the irrevocability of speech in online social networks.

Just seconds after posting something online it has likely been disseminated to dozens

of people and definitely been archived by an unknowable number of automated

systems. Though a delete button may provide solace to those having second

thoughts, in reality it is a façade—you can never truly take something back online.

And yet, people around the world are constantly changing and removing things they

have said, altering their online image.

 Aether investigates this phenomenon of online self-erasure by capturing and

visualizing deleted Twitter updates in real-time. Whereas people might hope that

their deletions go unnoticed, Aether amplifies and dissects the act for the public to

see.

 Aether is comprised of a central data processing server and multiple client

applications that interact with the server using Open Sound Control (OSC). The

Ruby server continuously processes the Twitter Stream API in a multi-stage pipeline.

The system stores all tweets in a local Memcached instance. Deletion notices in the

API stream are crosschecked with the archive to recover the data that has been

deleted from the public API. Deleted statuses are pushed to visualization clients in

real-time. Clients can be developed on any platform that can communicate using

OSC. The visualizations prepared for this project were written in Java using the

Processing framework. In practice the system is capable of recovering several

deleted tweets per minute, within seconds of the user deleting it.

 vi

TABLE OF CONTENTS

 

1  INTRODUCTION  1 
1.1. PROBLEM STATEMENT  2 
1.2. RELEVANCE OF THE RESEARCH  3 

2. RELATED WORK  3 
2.1. HUMAN CONDITION ONLINE  3 
2.2. RESEARCH ON TWITTER  4 
2.3. SAVING ONLINE DATA  5 
2.4. SOFTWARE FOR DATA AGGREGATION & VISUALIZATION  6 

3. RECOVERING DELETED TWEETS  7 
3.1. TWITTER API OVERVIEW  7 
3.2. METRICS FOR UNDERSTANDING DELETED TWEETS  8 
3.3. DESIGNING A DATA GATHERING FRAMEWORK  10 
3.3.1. Grab: receiving and storing Tweets & Users  12 
3.3.2. Retrieve: Looking Back into the Archive  14 
3.3.3. React: Interacting with Client Applications  14 
3.3.4. Utility Stages  15 

3.4. CLIENT APPLICATIONS  15 
4. VISUALIZING DELETED TWEETS  18 
4.1. USER‐CENTRIC VISUALIZATION  19 
4.1.1. SparkTimeline  19 
4.1.2. UserDetails  20 
4.1.3. Lifetime  21 
4.1.4. Departure  21 

4.2. CONTENT‐CENTRIC VISUALIZATION  22 
4.2.1. RecentText  23 
4.2.2. WordFrequency  23 

5. DISCUSSION  25 
5.1. THE NATURE OF INTERNET SPEECH  25 
5.2. ANALYZING DELETED TWEETS  27 
5.3. NATURAL LANGUAGE PROCESSING FOR TWITTER DATA  30 
5.4. DESIGN ASSUMPTIONS  32 
5.5. TECHNICAL PERFORMANCE CONSIDERATIONS AND RESULTS  33 
5.6. FUTURE WORK  35 

6. CONCLUSION  36 
REFERENCES  37 
APPENDIX  41 
A) TWITTER DATA  41 

 vii

B) AETHER DATA  42 
C) AETHER OSC API  43 
C.1) Server side (messages from client)  43 
C.2) Client side (messages from server)  43 

 viii

LIST OF FIGURES

Figure 1: Aether server data flow ..12 
Figure 2: Sample Twitter deletion notice (JSON) ...12 
Figure 3: Excerpt from Twitter status object (JSON)..13 
Figure 4: Example of RateMonitor output...15 
Figure 5: Event data sent to clients (JSON)...18 
Figure 6: SparkTimeline widget ..20 
Figure 7: Biographical Information in UserDetails widget ...20 
Figure 9: Lifetime widget ..21 
Figure 8: Tweet context in UserDetails widget ...21 
Figure 10: Departure widget..22 
Figure 11: RecentText widget ...23 
Figure 12: WordFrequency widget..23 
Figure 13: Full User-centric Visualization ..24 
Figure 14: Full Content-centric Visualization ...24 

 1

1 Introduction

Aether is an exploration of the irrevocability of speech in online social networks.

Just seconds after posting something online it has likely been disseminated to dozens

of people and definitely been archived by an unknowable number of automated

systems. Though a delete button may provide solace to those having second

thoughts, in reality it is a façade—you can never truly take something back online.

And yet, people around the world are constantly changing and removing things they

have said, altering their online image.

 Aether investigates this phenomenon of online self-erasure by capturing and

visualizing deleted Twitter updates in real-time. Whereas people might hope that

their deletions go unnoticed, Aether amplifies and dissects the act for the public to

see. Though the original tweet was publicly available, deleting it may seem more

like a private act expressed between the user and social network. When unseen

systems capitalize on this event it questions our understanding of public and private

space online and how much control we really have over our online identity.

 Twitter presents a new and interesting opportunity for multimedia artists to

explore communication at a global scale. Since starting in 2006, this “micro-

blogging” service has exploded in size. Twitter users send 50 million tweets (status

updates) per day, many of which also include precise geolocation information.

Though status updates are limited to 140 characters, they come with a wealth of

other metadata ready to be examined and visualized by today’s digital artists and

researchers. These updates are often personal in nature and can be a useful gateway

into examining the human condition in the 21st century.

 Another benefit for multimedia artists is the low barrier to entry for participating

in Twitter. The service is free and provides a standard web interface. Mobile tweets

can be sent using standard mobile text messaging (SMS) as well as rich-client

applications on internet-enabled mobile platforms like iPhone, Blackberry and

Android. Using Twitter in an installation piece means that the artist can elicit

 2

audience participation without requiring the development of one-off mobile

applications that may be platform dependent. Instead users can simply send a tweet

using the software they may already be familiar with.

1.1. Problem Statement
Data permanence on the Internet is a core topic explored by Aether. We are prolific

creators of social content that has often has a very timely component---talking about

what we are doing, expressing our current emotions. As new events and postings are

published the old ones fade away into history. We do not often think about the fact

our data is likely retained forever by the social networks we have interacted with.

Unlike physically written words that we might be able to definitively destroy, it is

effectively impossible to truly erase something that has diffused into the cloud of the

Internet.

 Surveillance is another theme touched on by Aether. Users do not realize that

they are being observed by a remote system such as this one. While millions of

people allow their Twitter updates to be public, they likely do not expect anyone

beyond their friends to be actively viewing them. They consider their social network

of followers as a semi-private space inside the otherwise very public Twitter

ecosystem. The boundary of public and private space online, explored by artists such

as Lisa Jevbratt [1], is ripe for discussion. Twitter estimates that there are over

100,000 third party applications accessing their API, which begs the question: would

people say the same things if they knew they were being automatically watched and

archived by entities other than their followers?

 Twitter is considered by many to facilitate peer-to-peer conversation beyond the

original idea of one-way microblogging and status updates. With this interaction

paradigm comes concepts borrowed from traditional human conversation. People

may be concerned with their public image and carefully groom their profile to ensure

it projects the right message. In Twitter, as in real conversation, you can’t truly take

something back after you have said it—but it doesn’t stop people from trying.

 3

1.2. Relevance of the Research
Current academic research on Twitter and social networks in general primarily

focuses on how users interact with others and what types of things they say. Not

much has been done with the question of why people delete things after they have

been published. Aether takes on this question while engaging other social aspects

that have been mapped to the online space such as issues of privacy expectations.

 On the technical side, Aether represents research into methods for high-volume

real-time data acquisition and processing. It tests various methods for implementing

a multi-stage pipeline and dealing with a never-ending data stream. The client-server

setup of separating the data gathering components from the end product provides an

example for other similar systems that need to have independent components

situated on multiple networks.

2. Related Work
This project operates in both the technical and social realms and has influences and

parallels in multiple fields. Though Twitter is the medium for data acquisition, the

core principal of Aether is examining people and their actions online. While there

has been much research focused on online publishing, not much has been said about

online self-erasure and the implications of people regretting what they said online.

2.1. Human Condition Online

The explosion of online publishing and social interaction has produced works that

look at a broad spectrum of emotions online. We Feel Fine [1] acts as a barometer of

people expressing feelings online. It regularly scrapes thousands of blogs from

around the world and looks for people expressing their feelings. The resulting data is

presented in six separate visual forms that provide detailed breakdowns on the types

of emotions being expressed. There is also an API that allows others to create works

using their data.

 4

 Deleting a tweet can be considered an implicit expression of regret. Secret

Regrets [2] posts user-submitted regrets in a blog format. PostSecret [3] publishes

pictures of user-submitted secrets, usually in the form of anonymous postcards sent

through the mail. While the content and tone varies widely, many of the published

cards consist of an admission of something the sender regrets in some fashion.

 REGRETS [5] by Mulfinger and Budgett is a multi-year project that asks people

to anonymously submit short descriptions of things that they regret. The project

initially solicited input from physical booths and mobile computing platforms that

went directly to people. The website continues to accept new input and serves as an

ever-growing archive of regret around the world. REGRETS approaches this subject

by focusing on specific, quantifiable regret as vocalized by the feeler. Aether takes a

different angle by looking at implicit examples of regret (people going back and

erasing something they said), and leaves it to the viewer to decide what the person

was regretting. Unlike REGRETS, the subjects do not realize their actions are being

recorded which may avoid response-bias at the cost of less precision since we can

only infer what their thinking may be.

2.2. Research on Twitter

Twitter has attracted many researchers in the humanities and social sciences eager to

discover new insights into how people interact online. Much of this research has

focused on why people choose to use Twitter, and how they interact with other users

of the system.

 Why we twitter: understanding microblogging usage and communities [5] is a

paper written just one year after Twitter started that uses social network analysis to

estimate user intention. Huberman et al. took social network analysis further by

looking at the follower vs. friend ratio as a predictor of user behavior [6]. The paper

particularly examined how certain subsets of users’ social networks matter more than

their network as a whole when it comes to posting behavior. Other research has

investigated conversation and collaboration on Twitter, including the use of the ‘@’

 5

symbol to denote a screen name [7]. They reveal how people use Twitter for

conversations and to what extent the current design of Twitter may hamper true

collaboration.

2.3. Saving Online Data

Aether can be considered an archive of Twitter data with a real-time reactionary

component. Archiving online material is as old as the Internet itself. Internet search

engines function by crawling the web and storing copies of webpages in vast

databases to be retrieved later. Though search engines like Google have recently

begun to provide some ‘real-time’ results, most search engine data is hours if not

days old.

 Many search engines allow users to view a cached copy of each page, usually

corresponding to the most recent version the engine has seen. Search engines tacitly

acknowledge that their data is likely ‘stale’ and that the page may have changed or

been removed since it was indexed. There is no declaration of which pages are in

fact deleted from the public view, but the pages will usually disappear from the

search engine index over time. Oftentimes items that have been recently deleted or

hidden can still be viewed by browsing a cached version of the page if it is still in the

search index.

 Unlike most search engines, the Internet Archive [9] provides multiple historical

snapshots for most websites, allowing users to observe how a website looked at

specific points in time. Their goal is to create complete snapshots of the web and

their data is often not available online until months after it has been acquired.

 Twitter provides their own search service, making old tweet data available to the

public. This service has a historical limit of roughly two weeks and they specifically

remove deleted tweets from their index, though they almost certainly maintain a

permanent copy internally. The United States Library of Congress has also recently

announced [9] that they are archiving every tweet, including historical data going

 6

back to Twitter’s nascence in 2006. While they will likely provide interface tools for

the data, it remains to be seen if they will make deleted tweets available.

 Tweleted [10] was a service that exploited a former bug in Twitter’s systems to

find deleted tweets for a specific user, entered on the website. Sometimes deleted

tweets were not removed from the search API so they would turn up in a comparison

with the regular lookup API. Twitter has since fixed the issue and the service no

longer works.

 In some sense, we are all temporary archivers of online data since our web

browsers store temporary copies of every visited webpage in a cache on disk. For

some users, cache clearing is infrequent and they can build up a large collection of

outdated webpages.

2.4. Software for Data Aggregation & Visualization

Aether does not intend to dictate a fully new visualization framework or data

processing paradigm but the development of the visualizations was inspired by other

work in the field. Several software systems have been created to facilitate

generalized data processing and visualization, especially in the area of aggregation

of large datasets.

 Yahoo! Pipes [11] is a novel web interface that uses a visual programming

environment to facilitate data manipulation. Users can connect many operations and

data sources together to get their desired composite dataset. This data can then be

exported in various formats including JSON and XML. It is especially useful for

people not comfortable with more traditional programming. Unlike Aether, the data

becomes available as a complete set after the pipe is run, not as a continuous stream.

 The Manyeyes portal [12] from IBM is a collection of online data aggregation

and analysis tools that allow anyone to upload a dataset (or use some existing data)

and explore it with many different visualization tools.

 Behaviorism is a cross-platform C++ framework by Angus Forbes [13] that

provides several services to support real-time information visualization. It uses a

 7

scene graph, data graph and timing graph to give the developer control over every

aspect of a complex dynamic visualization piece.

 Prefuse [1] is a Java library that provides tools for creating interactive data

visualizations. It provides several data structures for storing and searching the data as

well as several different kinds of data plots and filters to transform the data and the

visual presentation. Prefuse Flare is a recent Flash implementation of the same

concept.

3. Recovering Deleted TweetsTwitter API Overview
Twitter is one of many web services that provide a free Application Programming

Interface (API). An API is a set of specific methods or commands that allow other

developers access to their data. The Twitter API allows authenticated third parties to

retrieve tweet and user data as well as send new tweets. Twitter provides three

(currently separate) APIs that each serve a distinct purpose. Each API makes data

available in JSON (JavaScript Object Notation), XML and sometimes RSS Atom

format, depending on the particular method.

 The Twitter Search API allows you to search for tweets containing specific

keywords. Additional parameters allow you to specify a geographic region

(expressed as a radius around a latitude & longitude point), a date range and the

number of results to return.

 The Twitter REST API is the main interface for enquiring about specific users

and tweets. REST stands for REpresentational State Transfer and is a design

paradigm that specifies how to structure the methods of a web-service API. This

interface has methods for retrieving all data for a specific user as well as their most

recent tweets and the tweets on their timeline (what they would see in their personal

Twitter client). Applications can also send and delete tweets on behalf of a user,

provided they have the proper password.

 The Twitter Streaming API is the newest and most groundbreaking interface. It

takes advantage of long-lived HTTP connections to send real-time data for a

 8

potentially unlimited amount of time. Once connected, tweets come streaming at you

until you manually disconnect. The full Twitter stream (dubbed the Firehose) is only

available to large-scale “partners” such as Google or the Library of Congress but the

sampled stream still provides an avalanche of data. The publicly available stream is

said to contain a uniform 1/20th sample of all tweets [15]. This interface provides

parameters to filter by keyword or by a specific group of users. This API is the most

difficult to use efficiently since it involves maintaining a potentially unreliable

connection and processing data in real-time as it arrives. If data is not processed fast

enough, Twitter reserves the right to terminate the connection.

 Aether uses the Streaming API to get real-time tweet data and deletion notices.

The REST API is used to look up additional information about a user.

3.2. Metrics for Understanding Deleted Tweets
Twitter provides a wealth of metadata with each tweet that is a useful starting point

for investigation of the deletion event. Additional metrics can be derived from the

provided data to allow for even more in-depth analysis. Some metrics are useful for

quantitative evaluations while others are more useful for conveying general

information about the subjects in question.

 Below is a summary of the principal items examined by Aether.

 Context: A tweet is not necessarily an island --- it might be part of a larger

conversation. When the deleted item is placed into conversational context it can

sometimes be quite obvious why it was deleted (such as in the case of a typo, with a

corrected version re-sent immediately). Whereas a single tweet may not seem that

interesting, viewing more elements of a persons conversation at once can provide a

fascinating window into their lives. When a tweet is recovered, Aether retrieves a

few tweets sent by this person before and after the deleted one from the Twitter

REST API in order to provide context.

 Hashtags & Mentions: Hashtags are folksonomic markers used to self-

categorize tweets based on content. This allows anyone with similar interests to

easily find the tweet alongside all others with the same tag. Most hashtag usage is

 9

ephemeral and subject to ambiguity (the same tag meaning multiple things) or

fragmentation (multiple different tags for the same thing) but some research has

looked into using them for more powerful semantic applications [18].

 Technically, a hashtag is any text without spaces, preceded by a “#” symbol.

They are often used to tag a tweet about a specific timely event, such as The Oscars

(#oscars) or a particular concert (#okgomay222010). The presence of one or more

hashtags in a tweet would suggest that this person was engaging in a global

conversation beyond their close circle of followers. In effect, they amplified their

voice prior to deleting what they said.

 Mentions are a way of tagging a specific user by prefixing their screen name with

the ‘@’ symbol. On most twitter clients there is a column or view that automatically

displays other people’s tweets that mention you. Mentioning users is primarily how

people engage in a conversation directly with one or more people. Deleting a tweet

with a mention in it is the equivalent of trying to take back something that was said

face-to-face in real life, though there is no guarantee that the other person saw the

mention.

 Followers_count & friends_count: The number of followers is useful since it is

the number of people that will immediately receive any tweet sent, prior to it being

deleted (though no guarantee they will see it before it is deleted). Follower counts

are also interesting because the number is out of direct control of the user—other

people have to voluntarily follow them and can always un-follow them, driving the

number down. Friends are the people this user is following. Some researchers have

looked beyond raw counts to see how the ratio of followers to friends may be a

predictor for user behavior on Twitter [8] and spam detection [19].

 Lifetime: The length of time that a tweet was available for the world to see

before it was deleted is an interesting metric because it alludes to the (unknowable)

amount of people that may have seen it before it was rescinded. Longer lifetimes

suggest that more compelling reasons than fixing a simple typo that could have been

seen immediately.

 10

 Location: Twitter users can enter their physical location to be displayed on their

profile, though there is no requirement for accuracy or even that it be a real place.

Unlike Twitter’s tweet geotagging features, this location typically refers to a

hometown or other regional designation. The location is geocoded to precise latitude

and longitude using Google Maps geocoder service when possible.

 Source: The specific software used to post the message to Twitter can be used to

estimate if they were at a desktop computer or using a mobile device.

 Time sent, time deleted: The creation time is recorded from the initial tweet

data (reported in UTC time). The deletion time is recorded when the deletion notice

is received, also in UTC time. Times can be converted to user’s local time zone by

using the UTC offset.

 Typo text: The Levenshtein edit distance formula[18] is used to compare the

tweet to the set of other tweets that were sent by this user before and after this one. If

the distance is low (<5) for any of the tests then it is likely the deleted tweet was

considered a typo. The tweet that replaced this one is retained for analysis.

 User description: The self-reported “about me” section is useful to humanize

them and get a sense of their writing style.

 UTC Offset: The time difference (in seconds) between the user’s local time and

UTC / Greenwich Mean Time is used to estimate the user’s current time zone.

 Word Frequencies: Counts of how many times every word has been seen in all

deleted tweets are useful to see if a tweet is similar in content to other tweets that

have been deleted.

 Additional data beyond what is described above is retained to round out the

visualizations and facilitate experimentation with the data. A detailed rundown of all

data is in the Appendix.

3.3. Designing a Data Gathering Framework
The data-gathering portion of Aether consists of a long-running software system

written in the Ruby [17] programming language. Ruby is known for its “natural”

programming style and the brevity of its code. Ruby also strives for general cross-

 11

platform compatibility and can run on most modern operating systems. There are

many implementations of the Ruby language including one that runs on the Java

Virtual Machine (JRuby) and one by Microsoft that can run in a web browser

(IronRuby). The “standard” implementation is called Matz’s Ruby Interpreter (MRI).

The current stable version of MRI is 1.9.1 while the 1.8 branch is still widely used

and supported. Aether was developed on MRI 1.9.1.

 The Aether server has the joint duty of continuously gathering and storing new

data while also serving data to multiple visualization clients, a structure that requires

concurrent programming. Data is shuffled through multiple steps in a modular

pipeline that all execute in parallel. Each stage runs as a completely separate Ruby

process and communicates using Distributed Ruby (DRb) [19], a core Ruby

component that allows any Ruby object to be shared over the network. In theory

each stage could run on a separate computer, though for simplicity they are all run

together on the same testing server.

 The Aether pipeline consists of three primary stages: Grab, Retrieve and React.

These stages operate in Producer/Consumer relationships where each stage produces

data that is consumed by the next stage in line. Stages receive data via a push

paradigm whereby the producing stage remotely populates the target stage’s input

queue, rather than a poll method where the target stage would periodically check

upstream for new data.

 Unlike some Producer/Consumer systems, there is no way for a consumer to tell

the initial producer, Twitter, to temporarily pause data production in the event that

the consumer cannot keep up. Moreover, the volume of data coming into the system

is not constant and may include temporary spikes that must be accounted for to avoid

data loss. Thus it is imperative that each stage process data as fast as possible to

avoid losing data. Each stage must process different volumes of data with the input

volume generally decreasing in later stages as unneeded data is discarded. Figure 1

shows the data flow in the Aether server with sample volumes from a thirty minute

test run at mid-day.

 12

Figure 1: Aether server data flow

3.3.1. Grab: receiving and storing Tweets & Users

The Grab stage operates the connection to the Twitter streaming API. Each line of

data initially arrives as a raw string of characters that must be converted into a usable

data structure. Aether requests data in JSON format since it is less verbose than

XML, saving bandwidth and memory resources. Twitter currently sends two types

of data through the streaming API: status objects and deletion notices.

 Deletion notices contain the id of the status that was deleted as well as the id of

the sending user.

{:delete=>{:status=>{:user_id=>69114405, :id=>8408482002}}}

Figure 2: Sample Twitter deletion notice (JSON) 

 13

All delete notices are immediately forwarded to the Retrieve stage for further

processing.

 Each status object contains metadata for the status update as well as information

regarding the sending user. An excerpt of a typical status object is in Figure 3.

{
"id": 13094530000,
"text": "Ok back not getting too bad. Hopefully I'll get some sleep.",
"created_at": "Thu Apr 29 22:53:35 +0000 2010",
 "source": "<a href=\"http://ubertwitter.com\"
rel=\"nofollow\">UberTwitter",
 "user": {
 "friends_count": 127,
 "lang": "en",
 "created_at": "Thu Nov 20 02:36:19 +0000 2008",
 "statuses_count": 7038,
 "time_zone": "Edinburgh",
 "profile_link_color": "0000ff",
 "geo_enabled": true,
 "followers_count": 63,
 "location": "Anywhere you are!!",
 "screen_name": "fifinoir",
 "name": "fiona",
 "id": 17502304,
 "utc_offset": 0,
 }}

Figure 3: Excerpt from Twitter status object (JSON)

An important function of the Grab stage is to discard statuses we are not interested

in to save resources. Subsequent stages in the pipeline may perform computationally

expensive processes on each status so it is imperative to minimize the amount of

work to be done and not lose desirable data due to buffer overflows. Each status

object is run through a special skip function that determines if we should discard it or

pass it on to later stages.

 The criteria for skipping a status depend on the scope of the project and the

intended uses of the resulting data. It is also important to minimize the complexity of

the skip function since it will be executed more than any other processing function in

the data pipeline. More specific and intensive tests can be deferred to later stages that

process comparatively fewer data objects. The skip function has been shown in

practice to discard as much as 60% of the data, saving considerable resources.

 14

Automatically discarding data can be risky depending on the application

requirements so it is important to choose the skip criteria carefully. Details on the

assumptions underlying the skip function criteria are presented in the Design

Assumptions section.

 All statuses that pass the skip test are stored in the local memcache instance for

later retrieval, keyed to the unique tweet id.

3.3.2. Retrieve: Looking Back into the Archive

Deletion notices are consumed by the Retrieve stage. The memcache is checked for

the tweet id provided in the deletion notice. If successful, the tweet and

accompanying User are retrieved for further processing. If the tweet was not found,

the delete notice is put into a special queue to be tried again one or more times in the

future. This is important because Twitter states that sometimes a delete notice may

arrive before the status does, and there is also the chance that the status has been

received but not saved yet.

 This stage is able to perform computationally complex data processing

operations since the maximum throughput is orders of magnitude lower than earlier

stages. Any fields that will be made available to visualization clients are extracted

and used to create a new record called an Event. Each Event corresponds to a

successfully retrieved deleted tweet and is stored in the MySQL database so it can be

easily retrieved and sent to external clients. Each event is also immediately sent to

the next stage to be dispatched to currently active clients.

3.3.3. React: Interacting with Client Applications

All real-time communication with external clients is done using Open Sound Control

(OSC) in the React Stage. This stage accepts connection requests and maintains a list

of active clients that can each be sent specifically tailored data. The connection API

details are covered below in the Client Applications section as well as the Appendix.

 React maintains a list of the most recent several events to facilitate populating

new clients when they come online. This list is initially pulled from the Event

 15

database on startup. The total size of the history list is capped so the oldest events are

eventually discarded from the buffer.

 Each fresh Event is popped from the incoming queue and immediately broadcast

to all active clients. This enables each client to receive new deleted data in near real-

time. The new Event is also added to the top of the history list to keep it up-to-date.

React also immediately broadcasts server DataRate updates since they are time-

sensitive.

3.3.4. Utility Stages

There are two utility stages that support the overall functionality of the system.

 StageMonitor periodically requests a detailed status report from each main stage.

The report describes the total number of items processed and approximate processing

rates. This information is available to the server operator to see how each stage is

doing. With each stage running as a separate process it would otherwise be difficult

to get a summary of all stages.

 RateMonitor calculates real-time data flow rates in each stage at a finer

granularity than StageMonitor. Clients can use this information to visualize the state

of the system. Rates are calculated as a rate per second over a change in time equal

to the report period.

{:rate=>true, :now_ms=>1274754288000, :status_rate=>19.6141,
:del_rate=>4.230, :succ_rate=>0.05234}

Figure 4: Example of RateMonitor output

RateMonitor runs once per second to get an estimate of current data rates. The

current timestamp is bundled with the rates in a Ruby Hash and forwarded to the

React stage for transmission to clients.

3.4. Client applications

Client applications are any other software system that consumes deleted tweet data

from the Aether server. Clients could include dynamic visualizations, re-broadcasters

 16

or even hardware devices with scrolling LCD screens. This project does not attempt

to dictate exactly how a client application should function, but the components

needed for successful interaction with the server API are documented.

 The Aether server is designed to maintain connections with an arbitrary number

of client applications that have registered to receive data. The server pushes new

deleted tweets to all registered clients as they are recovered, enabling near-real-time

visualization. The client-server API is built on Open Sound Control (OSC) since it

provides for push-style data flow [20]. Pushing data to the clients as it is created is

important since the flow rate is not consistent and it avoids wasting resources to

constantly check the server for new information. The Server has a well-defined OSC

address space that acts as the external API for the deleted tweet data. Clients must

implement a similarly structured OSC address space to provide specific endpoints to

receive new data. All OSC data is sent across the network using the User Datagram

Protocol (UDP) since it is simple, well supported and efficient.

 Clients must first register with the server to enable the server to send data back

automatically. This is accomplished by sending the client’s IP address and active

port number to the server’s /register address. These details are used to assemble a

unique identifying key, which is required for all subsequent server interactions.

Multiple clients from the same IP address can operate simultaneously so long as the

ports are unique. The visualization clients developed for this project random ports

within a certain range to minimize the chance of collisions.

 The IP address and port must be accessible by the server in order to establish

successful bi-directional communication. This is not always possible, such as when

the client is behind a router on a private network. In these situations a server-side

technique known as UDP Hole Punching [16] can be used to trick the network into

allowing the communication. On the client side, Universal Plug-n-Play can be used

to automatically open the required port if the network hardware supports it. This

method was successfully used in the Java-based client applications via UPnPlib from

 17

SBBI [23]. These methods are not needed when both the client and server are on the

same network but may be required if a client is being run offsite such as at a gallery.

 Clients should send periodic /hello keep-alive messages to inform the server that

they are still running and expecting data. This is useful if the server restarted and no

longer has a record of the active client. Messages from unknown clients will cause

the client to be re-registered using the provided client key, re-establishing the

connection. The time of the most recent keep-alive message is recorded for auditing

purposes. This feature is designed to maintain reliable communication between the

server and many clients when left unattended for long periods of time.

 There are three main OSC methods for requesting event data from the server.

/event/latest will send the most recent event back, while /event/random will return a

random event from the history buffer. Since the history buffer is a fixed size and

constantly updated, even the random event will be relatively recent. /event/history

will request the entire history buffer. This is useful to bootstrap a fresh visualization

so it does not start empty.

 Event objects from the server are transmitted as serialized JSON, as shown in

Figure 5. The client must parse this into a usable representation. The event contains

all the fields present in the server’s Event object stored in the database.

 Periodic updates from RateMonitor are sent as serialized JSON to the /rate

address of each client.

{"tweeted_at_utc":"2010-05-24 22:17:12 UTC",
"tweet_id":"14650753602",
"text":"@KristalMeth1 I'm sorry if you took any of my tweets personal..
They weren't directed towards you and that's my word.. I love you",
"screen_name":"I_Am_Spades","location_str":"Sandy Springs, GA, US",
"lat_lng_mapped":"0.372195987447699,0.698947592592593",
"sent_time_24":"Mon-17:17","deleted_time_24":"Mon-18:01",
"lifetime":2630,"source":"UberTwitter",
"friends_count":408,"followers_count":406,"user_deletes":1,
"word_text":"i m sorry if you took any of my tweets personal they werent
directed towards you and thats my word i love you",
"hashtags":[],"mentions":["@KristalMeth1"],"urls":[],"utc_offset":-
18000,
"description":"Praying for my enemies.. In Nomeni Patri Et Fili Spiritus
Sancti..",
"profile_image_url":"http://a1.twimg.com/profile_images/919651086/108060
789_normal.jpg",

 18

"created_at":"2010-05-24 16:01:08 -0700","history":false}

Figure 5: Event data sent to clients (JSON)

4. Visualizing Deleted Tweets
While catching and storing deleted tweets is the primary mission of Aether, it is

useful to see what you have caught. Two dynamic visualizations were created to help

the public investigate the deleted tweet data.

 A principle goal of visualizing information is to “make visible the invisible”

[18]—to take a collection of data points and derive metrics and figures that reveal

underlying features and patterns. The large and multidimensional nature of the

dataset presented a challenge of scope and scale—what part of the data should be

visualized? How can many tweets be visualized at once? The client-server design is

intended to support many heterogeneous clients simultaneously, which reduces the

pressure to make a single optimal visualization. Instead multiple visualizations can

be presented side-by-side which increases coherence by promoting visual linking—

an important concept when dealing with such multivariate data. This passage from

Graphics of Large Datasets summarizes it well:

Linking is only possible if multiple views of the same data can be displayed
simultaneously [...] It is essential to think of many displays contributing to an
overall picture and not to aim for some “optimal” single display [17].

Visual linking is promoted within a single visualization by designing everything to

occupy one screen instead of switching between multiple disjointed pages. The

visual elements themselves take the form of widgets—standalone objects that can be

easily laid out on the grid and controlled independently. The goal is to make it quick

and easy to re-arrange and resize components to explore different aesthetics. Each

widget has the concept of a “current event” which is the most recent event received.

While many widgets display an aggregation of all current events, each also

highlights the current event using a consistent color. With this technique it is easy to

see how the current event fits in to each display paradigm for extra cohesion.

 19

 These initial visualizations were developed in Java and Processing [23] and are

targeted for autonomous gallery presentation instead of detailed user interaction.

This means that the programs will run unattended for long periods of time and

update without any requirement or opportunity for user input. This approach deviates

from Ben Schneiderman’s Visual Information-Seeking Mantra of “Overview,

Zoom, Filter, Details on demand” [16] since we are not allowing users to interact

directly with the visualization. Even so the design process took into account the

overarching goal of Schneiderman’s theory—ensuring the information is conveyed

efficiently to those who want to see it. This puts extra pressure on the use of space

and time to ensure it is interesting and not too cluttered since there is no opportunity

for viewers to filter or modify the presentation.

 With so many potential variables to investigate it was decided to segment the

problem in to two separate but complementary tracks – user-centric and content-

centric. When both visualizations are displayed simultaneously side-by-side they

provide a detailed picture of real-time deleted tweet data.

4.1. User-centric Visualization
The user-centric approach seeks to understand deletions through the lens of the

sender—who are they? What were they doing when they sent it? How much time

elapsed before they deleted their tweet?

4.1.1. SparkTimeline
This widget is common to both visualizations. Data rates coming from the server are

rendered as a continuously updating sparkline. Sparklines are described by Edward

Tufte as “small, high resolution graphics embedded in a context of words, numbers,

images” [20].

 Time progresses to the right and the previous data points are plotted before the

graph reaches the right side of the screen (the end of the display period), where it

rolls over and starts from the left side again. The display period is variable and

 20

determines how fast the graph moves across the screen, as well as how dense the

resulting lines appear. A period of 120 seconds is the default.

Figure 6: SparkTimeline widget

The white line depicts the rate of tweets being stored by the Grab stage and the

colored line shows the deletes being checked by the Retrieve stage. All data points

are graphed in terms of items per second. New events are marked on the timeline

upon arrival as vertical lines. Previous events remain on the timeline until it rolls

over.

4.1.2. UserDetails
This widget displays some basic user information and puts the deleted tweet in

context. Metadata such as user screen name, location and number of followers helps

build an image of who this person is in real life. The user’s profile picture and

biographical description are displayed to further humanize this person.

Figure 7: Biographical Information in UserDetails widget

The deleted tweet is displayed in context with a few tweets sent around the same

time that remain undeleted. The age of the tweet (how long ago it was originally

sent) is also displayed. This reinforces the “lifetime” of the tweet since viewers can

see how long ago this tweet was sent, and how far back in history the user had to go

to find the delete button.

 21

4.1.3. Lifetime
The length of time that each tweet was publicly available is plotted as a single

dimensional plot, with time progressing to the right. Time is apportioned along the

axis using a logarithmic scale due to the large range of values involved.

Figure 9: Lifetime widget

Labels are provided at meaningful times like Minute, Hour, Day and Week. Events

are drawn as translucent lines (with the current event highlighted), allowing for

relative density to be estimated where there are clusters of overlapping events.

4.1.4. Departure
The two primary events of a tweet’s lifetime – being launched into the web and

subsequently being snatched back – are modeled as a transit departure graph similar

to those highlighted by Tufte [21]. Two days of time is displayed along a horizontal

axis on top and bottom. Some events span more than one day, such as tweets that

were sent in the evening and deleted the next morning. By displaying two days we

can accurately place them on the timeline without the deleted time coming before the

sent time. This follows the wrap around principle for schedules that Tufte discussed

[22].

Figure 8: Tweet context in UserDetails widget

 22

Figure 10: Departure widget

Each event is drawn as a line connecting the sent time on top to the time of deletion

on the bottom. The graph primarily investigates the relative difference between time-

of-day that a user sent their tweet and when they chose to take it back. This can show

if tweets that were sent late at night are often deleted in the mornings.

4.2. Content-centric Visualization
The Content-centric visualization looks at the text of the tweet itself to investigate

why it may have been deleted and how it compares to other deleted tweets. It

originally included Natural Language Processing methods of content analysis but

they were abandoned due to limited efficacy with the short, noisy twitter updates.

 23

4.2.1. RecentText
The content of each tweet is the center of attention for this visualization, so the

previous several tweets are displayed in rows with the current tweet highlighted. The

user’s profile picture is displayed next to each tweet to stamp it as unique –

reminding viewers that unlike the rows of contextual tweets in the User

visualization, each tweet comes from a different user.

Figure 11: RecentText widget

4.2.2. WordFrequency
This widget displays the most frequently seen words over the course of the

visualization. Words in the current tweet that also appear in the most frequent words

are highlighted which makes it easy to see how typical this tweet is. In this context,

“words” are any tokens that are not URLs, emoticons or otherwise contain non-word

punctuation. There is no requirement that tokens be actual words (since many are

slang or abbreviations). These are entered into a RiConcorder from the RiTa library

[27], which calculates cumulative word frequencies. Each time a new event arrives

the word frequencies are updated and a new set of top words is extracted.

Figure 12: WordFrequency widget

 24

Figure 13: Full User-centric Visualization

Figure 14: Full Content-centric Visualization

 25

5. Discussion

5.1. The Nature of Internet Speech

Internet publishing may be considered in the vein of personal speech, especially in

blogging and social network contexts. By taking our conversation online we are

melding the boundaries between the traditionally formal grammatical structure of the

written word and the more fluid nature of spoken language. Researchers have been

closely observing this change in language, examining ways in which our online

communications relate to what we are used to thinking about with language. Linguist

David Crystal concluded that this new “netspeak” is “neither spoken language nor

written language nor sign language, but a new language dimension of computer-

mediated language” [31]. Twitter is an acceleration of this change in language since

the input methods vary widely and the length of each update is rigidly limited,

leading to many more people adopting the abbreviations and slang of netspeak. The

result is that we compulsively shrink our words and even whole passages to fit into

the space allowed (or the amount of typing we are comfortable with on our mobile

device).

 This textual shrinking has been accompanied by diminishing time spent

composing each piece as well as less personal reflection time before sending it. A

physical letter may take several minutes of careful thought to compose (avoiding

misspellings that are difficult to correct), while an email may take just a minute or

two. The time it takes to actually mail something provides additional reflection time,

and many chances for those having second thoughts to retain the letter without ever

sending it. Emails can similarly remain in a perpetual draft state, though the

instantaneous “Send” button is always there, tempting us to simply dispatch it and

move on to other things. Tweets represent the extreme of this trend towards quick

publication without consideration–they require only a few seconds to write and

 26

“right now” theme of Twitter encourages us to just send it immediately so we can

ready ourselves to send another. There are so many tweets being sent all the time it

would seem quaint to agonize over individual details—setting us up to potentially

regret things said in haste.

 People are becoming more open with what they share online and yet

simultaneously clinging to an expectation of privacy or stealth, dubbed the “privacy

paradox” by Susan Barnes [17]. When things that were publicly viewable all along

are suddenly thrust into the spotlight—such as when parents read their children’s

online postings—the immediate reaction is often shock and surprise rather than

responsibility for what was said. We forget that the Internet will never be a truly

private space.

 A topic of interest when considering Internet publication and the notion of

responsibility is the question of single vs. multiple publication. Is mass-publication

defined by a single event (such as hitting the “submit” button on a blog post), or is

the act replayed every time someone else views the work? This can be a big

distinction on the Internet when items can be viewed by thousands of people, and it

is not always possible to get an exact count.

 This question has roots in disputes of defamation with the very first printed

publications. When assessing damages, courts had to consider if the publisher was

liable for just the initial act of publication (regardless of the number of copies

produced) or could be assessed for each instance of the printed work (perhaps

thousands of times). The current legal precedent has converged on the single

publication rule, which stipulates that a single edition of something can make the

publisher liable for only one case of libel [31]. There is still debate as to how to map

the concept of an edition to the digital realm.

 Though primarily a legal concept, the single publication rule can influence how

we think of deleted tweets. It may caution us to avoid ascribing too much importance

to tweets that were deleted after a long time. Though the tweet may have been

 27

viewable for days or even weeks, a user trying to rescind their speech out of fear of

causing offense is no more liable than if they had deleted it right away.

 Since Twitter is often described as a form of “microblogging” it is important to

consider how even normal-sized blogs are different from traditional publishing.

“Weblogs” have become quite popular in part because of the low barrier to entry—

blogging platforms are usually free and easy for novices to use. Writers are expected

to “be themselves” and not conform to rigid standards of content and refinement. An

interesting characteristic of blogs is that entries are arranged chronologically and not

alphabetically or in a logical order that supports an overall argument [27]. Twitter

takes this point to the extreme as several consecutive tweets by one person may all

belong to different conversational threads or may be independent expressions. This

limits the amount of automatic contextual interpretation we can do based on the data

presented in the visualization – only other humans can really decide how a tweet fits

into the surrounding context, if it fits at all.

5.2. Analyzing Deleted Tweets

Information takes on a new dimension when it has been deleted. Previously mundane

statements suddenly acquire newfound salience and provoke many questions, the

foremost usually why did they delete this? Aether does not purport to definitively and

automatically decide why something is deleted – that is both computationally hard

and prone to error since only the sender can truly say why something was deleted.

Instead it seeks to make information available to let viewers muse on the motivations

of the sender—both when they sent the tweet and when they changed their mind. In

doing so many other questions can be explored along the way, such as who is this

person, and how were they using Twitter?

 Twitter can seem impenetrable to some digital humanists and researchers,

offering an avalanche of enticing human data while at the same time defying the

application of many time-honored analysis methods. Tweets seem too short in length

for close reading (the painstaking analysis of a single piece) and too disjoint for true

 28

distant reading (Franco Moretti’s idea of poring over large datasets to gain insight

through aggregation [34]). The text seems at once noisy and heavily encoded—typos

and sentence fragments co-exist with emoticons, URLs and other semantic elements

employed to pack as much meaning into 140 characters as possible. Twitter users’

fluid grammar and hit-or-miss spelling thwarts many efforts at parts-of-speech

tagging and classification. Social datasets like Twitter are likely to only grow in size

and ubiquity, leaving much work for digital humanists and computer science

researchers.

 While computational tools have a ways to go before they can be reliably applied

to random sets of tweets, there are other angles that can be examined at present.

Placing the rescinded tweet in context with ones sent immediately prior and

afterward helps envision the users’ behavior patterns. Though many tweets contain

typos, it is easy to see if that was why it was deleted. Aether estimates this by

comparing each tweet to the collection of other tweets sent by the user around that

time (indicating that the user re-sent the tweet with only minor corrections).

Incidentally, out of a sample of 20,000 deleted tweets, only 16% were found to be

typos using these criteria.

 Specific dates can be correlated with events in the news, or days of the week (do

people spend Monday complaining about the new week, only to have second

thoughts and delete the later in the week?). Time of day can be examined as well

such as if tweets sent on Friday nights out are often deleted Saturday mornings.

 Time continues to play a central role with the consideration of the tweet lifetime

(the number of seconds that elapsed between when the tweet was sent and when it

was deleted). During this time the user was doing other things while their tweet

floated through cyberspace being seen by an unknowable number of entities. When

plotted in the Departure widget of the User visualization it is clear that many tweets

are deleted within an hour of being sent. And yet, there are ones that were deleted

days, even weeks later. It took effort for the user to even find the tweet in the Twitter

interface in order to hit the delete button, and it is likely that no human twitter users

 29

were looking at that tweet anymore. These long-tail deletions offer one of the most

interesting points of investigation in Aether.

 Though machine-learning approaches to content categorization were not

successful (see the discussion of Natural Language Processing tools in 5.3), some

basic classification in Aether was still possible using regular expressions. Dividing

content into categories can provide a new angle to the data, exploring questions such

as if explicit tweets are deleted more often than tweets with non-offensive language.

Regardless of the efficacy of classification and the amount of meaningful categories

employed there will always be some tweets that can only be labeled as idle chatter.

This chatter takes the form of such vacuous statements as “whats up?” and “Awake.”

Both are real tweets that were really deleted. Why would someone bother to delete a

short snippet of conversation that may not have had a purpose to begin with? That

question alone may stump the viewers of the system.

 Recent legal cases also suggest that some deletions may be motivated out of self-

preservation. There are always media reports of people getting in trouble as the

result of immodesty online --- such as losing their job due to scandalous postings on

Facebook. Recently tweets have started becoming used as evidence in court – to the

chagrin of their senders. The case of Amanda Bonnen vs. Horizon Group is an

example that demonstrated both the use of Twitter in the courtroom, and the risk that

corporations take in using engaging single people through the legal system [36]. In

this case Bonnen used Twitter to complain about mold in her Horizon Group-owned

apartment. Horizon sued her for defamation, promptly elevating the case to national

attention. Bonnen was a small-scale Twitter user with less than a few dozen

followers who saw her original tweet. The tweet in question ended up being read by

millions as a result of media publicity, giving substantial negative publicity to

Horizon. In the end the court dismissed the case, citing the tweet as being “too vague

to meet the strict definition of libel.” While this episode ended happily for the

defendant it is entirely plausible that people may have second thoughts about a

pointed comment they made and take it back in hopes of avoiding litigation or other

 30

negative consequences.

 The autonomous Aether system is not the only actor in this equation. Like any

software it is unfeeling and does not care about the semantic and emotional content

of other peoples’ tweets; it just calmly collects them as directed. The viewers play a

role of interpreter since they may empathy towards those whose thoughts and

feelings are being sampled and dissected. When we see these statuses on the wall

that were taken back we feel a sense of voyeurism, like we are spying on them.

 Some viewers of the installation have questioned the legality or ethicalness of

storing and presenting other users’ deleted tweets. While the moral and ethical

considerations surrounding this process are an enduring question (and provide

purpose to this project), the legality can be addressed by looking at the Terms of

Service and other documentation published by Twitter. The primary Terms of

Service (aimed at general users of Twitter) does not cover deleted tweets [39]. The

Developers Rules of the Road specifically mentions deletion saying:

Respect the privacy and sharing settings of Twitter Content. Promptly change
your treatment of Twitter Content (for example, deletions, modifications, and
sharing options) as changes are reported through the Twitter API [38].

Though not clearly spelled out, this would hint that Twitter does not want developers

publicly displaying tweets that have been deleted. Twitter’s help pages mention that

while you can delete your tweets from their system, they may remain in search

indexes [17] and other site language also warns that it may remain in third party

applications (such as this one). Future work includes an idea to operate a “lost and

found” that catches these tweets and sends them back to the person that deleted

them. A compelling element to this plan is the unknown level of user response or

backlash. Users reacting strongly to such a system may in fact cause Twitter to

tighten and enforce their policies with regards to the use of deletion requests.

5.3. Natural Language Processing for Twitter Data

Natural Language Processing methods were investigated to further analyze the

content of the tweets but were largely abandoned due to inefficacy. Twitter updates

 31

are difficult to process using higher-level tools because each individual update is

short (less than 140 characters) and is low in content.

 Automatic content-based categorization and classification was investigated to

shed light on the nature of the tweet’s content. These tools typically require

assembling a large training set of data for each possible category. These sets are used

to generate a ‘fingerprint’ that characterizes the items that are expected to fall into

each category. New items can then be categorized by comparing their contents to

each fingerprint using statistical tests. Some researchers have found success trying

to classify tweets based on content and sentiment using a variety of techniques [39]

[40]. The Java Text Categorization Library [41] was used to experiment with text

classification for Aether but results were not reliable due to the limited size of input

text.

 Parts-of-Speech (POS) tagging involves labeling each word in a sentence with its

linguistic part of speech (such as noun or verb). Digital humanists use POS tagging

to investigate individual sentence structure and dialect as well as inform research in

linguistic trends. POS tagging efforts with tweet data were mildly successful but ran

into contextual inaccuracies. Words that could be a noun or a verb were often

mislabeled, an error that can be avoided with contextual awareness not easily

available with such limited, noisy data. Many tokens found in tweets do not readily

map onto our notion of part-of-speech, such as emoticons and hashtags. The RiTa

library [30] was used to explore POS tagging since it is designed for Processing and

has many different text processing features.

 One interesting NLP tool that deserves further study is the Markov-chain

sentence generator. This works by analyzing a large group of sentences to produce a

statistical model that can be used to generate similarly structured sentences. While it

can be difficult for these tools to generate truly realistic sentences, a cursory

investigation suggested that they are well suited for use with Twitter content. Since

tweets are sentence-like in length and structure but typos and grammatical issues are

tolerated, the typical shortcomings of a Markov-chain generator are accommodated.

 32

Generated pseudo-tweets appeared to be very similar to actual tweets. This could be

used in a future work that looks at the fluidity of language evidenced in status

updates, and how possible it is to fool people with fake updates.

5.4. Design Assumptions
There are many decisions and assumptions made during the design of this system

that affect its current architecture and operation.

 The decision to target real-time visualization (as opposed to offline batch

processing) has had the greatest influence on the design of the system and is the

primary reason the server is divided into separate processes since it is so important to

optimize the throughput of each stage. This factor also influenced issues of memory

management since there is not an upper bound on the number of items that will be

processed, or on the total runtime of the software system.

 The initial visualizations are targeted at autonomous gallery display, which

affected how they were designed. Without the ability for user interaction and

filtering the widgets must be carefully laid out to maximize data presentation while

minimizing clutter. It also encouraged more use of time in the displays to reinforce

the dynamic nature of the data since people will not be directly using the system to

see new data come in. By saying that something happened “less than one minute

ago” and updating the age as time elapses it is more obvious if data is fresh and new.

 The primary data gathering assumptions involve heuristics to discard as much

data as possible to keep the workload manageable. As mentioned previously, each

tweet is checked against a configurable skip function in the Grab stage before it can

be saved. Those that fail the test are immediately discarded. The skip criteria may

have the biggest effect on the character of the system and as such must be carefully

crafted to segment the population of tweets in a logical, well-defined manner and

reject those that would negatively impact the output.

 It was decided that the skip tests for Aether would be designed to limit the

acquired data to tweets sent by users in the United States or Canada, and written in

English. This drastically cuts down on the number of tweets that end up being saved

 33

while still keeping a coherent grouping (instead of discarding them randomly). The

written language requirement was developed since the audience viewing the

visualizations will be predominantly English speakers.

 Country of origin is determined via the user profile’s location as well as UTC

offset (time zone). Both of these metrics have the potential to be misleading since

they are user-supplied via the Twitter settings page. Relying on the estimated

location is fraught with peril since the location string is free-text, may not be their

actual location, and may not even be a real place. Since geocoding takes non-

negligible time it is relegated to post-retrieval and cannot be used to skip a tweet

outright before saving, thus wasting memory. The UTC offset is a more effective test

since it is quick to check and it is probable that most users have filled it in correctly

since this setting affects how twitter displays the times of all the tweets on their

website.

 Written language is checked by looking at the user profile “language” field. This

too can be prone to errors as not all users have picked the right language in their

Twitter preferences, and some people write in more than one language. A Ruby

library called ‘whatlanguage’ is used in the Retrieve stage to estimate the language

based on the actual textual content.

5.5. Technical Performance Considerations and Results
The Aether server software was developed and tested on a dedicated Ubuntu Linux

server with a quad-core 2.5Ghz Pentium processor and 2GB of RAM. It was given a

publicly accessible hostname, which simplified client-server access. Clients were run

on a variety of computers and networks.

 Unrecovered tweets were originally archived in a regular MySQL database but

the insert bandwidth was found to be a primary performance concern. Though

MySQL is a relatively fast database system the test server was not powerful enough

to handle a never-ending high volume stream of insertions while also performing the

rest of Aether’s functions, such as interacting with clients. The buffers between Grab

 34

and the database-storing stage constantly overflowed, causing up to 50% of all data

to be lost. Additionally, Twitter throttled the amount of data being sent since it was

not being consumed fast enough. This resulted in a far lower deleted tweet recovery

rate while still using almost all of the server’s resources and negatively impacting the

other Aether components.

 These MySQL performance issues resulted in making a switch to Memcached

[38], a technology originally developed by Livejournal as a distributed caching

system to increase performance of high traffic websites. Memcached stores all data

in volatile RAM memory instead of on disk so it is not persistent, meaning the data

disappears if the Memcached or the computer is restarted. This is contrasted with

regular databases such as MySQL, which maintain data until it is intentionally

deleted. Memcached instances on several computers can be joined together to

provide a larger storage space and potentially increased performance as the load is

shared across machines. It was decided that not losing any data when it arrives from

Twitter is a better short-term goal than having an infinitely large archive but not

knowing how much data was never saved.

 Unrecovered tweets are currently being held in a 768MB Memcached instance

running on the test server. In practice only about 88% of the capacity is available for

data items—the rest is used by Memcached for recordkeeping and other tasks. As the

cache fills up, older tweets get evicted which limits how far back in time Aether can

look. In practice, the limit is about 500,000 tweets, covering about 12 hours of

history assuming a nominal saved tweet rate of 12 per second. Increasing the size of

the local Memcached instance or expanding the pool to include Memcached

instances on other servers would increase the maximum look-back time.

 While data rates fluctuate, about 4% of all data items received were deletion

requests, the rest were new tweets. On average about 5% of these deletion requests

were successfully retrieved. The other 95% of missing tweets can be explained by a

few factors. First, we discard up to 60% of all tweets received in order to save

resources and limit the data to the desired demographics so these tweets will never

 35

be recovered. As mentioned previously, increasing the size of the Memcached

instance or using a different database system would increase the number of tweets

that can be archived at once, increasing the recovery rate.

 Besides technical implementation concerns, there are a few known systemic

limitations to the current approach. Aether may not suitable for academic statistical

analysis since the sample stream contains only 5% of all tweets sent and we discard a

large percentage of them to save resources. Additionally, the design decision of

pursuing real-time analysis effectively prohibits doing heavy processing on every

single tweet received (such as geocoding). This makes it difficult to compare

recovered tweets to the larger population since unrecovered tweets do not have as

much derived metadata.

5.6. Future Work
Most web services today provide a standard HTTP / REST API, which allows a

variety of different uses for the data including access by a standard web browser. We

Feel Fine is a perfect example of an information art project that added an API to

encourage the use of its data. At present there is no such interface but one could

easily be added to complement the existing OSC API since the data is stored in a

standard database. It would function as an application separate from Aether that

retrieves deletion Event information directly from the database and returns it to

clients via a web server such as Apache. These APIs tend to be more discrete and

history-oriented (sending back finite chunks of previously existing data) but with

additional infrastructure a real-time streaming system similar to the current Twitter

Stream API could be produced. Aether would then begin to act like a sort of filter for

the main Twitter Stream API, providing a subset of the main Twitter stream to

interested clients.

 It would be useful to revisit MySQL or investigate new database solutions to

replace or augment the current Memcached archive. Disk-based persistent databases

would dramatically increase the recovery rate since tweets can be archived for a

longer time. Changing or adding databases is only feasible of the insert performance

 36

issues can be addressed in order to not lose data.

 There are many other applications of the deleted tweet data besides ephemeral

visualization. A Twitter account named @tweet_morgue has been created to collect

these “dead” tweets and make them available for others to see using Twitter’s own

infrastructure. If the dead tweets are prefixed with the original sender’s twitter screen

name (a mention) then the sender will likely see their deleted tweet come back onto

their timeline, provoking interesting user reactions. By sending deleted tweets back

to the originator the @tweet_morgue also acts as a sort of lost & found for errant

tweets. A primary theme of this project so far is that the senders do not realize they

are being observed. Would their behavior change if they were made aware that their

deletions are being archived and dissected?

6. Conclusion
Aether has proven to be a robust platform for real-time processing and recovery of

deleted tweets. The multi-stage pipeline approach and separated client-server

architecture has allowed for a flexible system that can support several heterogeneous

clients running simultaneously at multiple locations. The push-style client

communication over OSC allows for clients to display deleted tweet information

within seconds of the real-world deletion event.

 The data produced has provided an interesting window into an often-ignored part

of the data lifecycle. Initial visualizations made the data accessible to the general

public and often provoked questions and observations as people viewed the

previously hidden actions of Twitter users around the country.

 Future work will continue to make the data available in more formats and to

more people. As people realize their online data is not completely in their control

they may reconsider what they say and give up deleting all together. Until then,

Aether will be watching.

 37

References

[1] Lisa Jevbratt. (2006, June) Searching traces of We: Mapping Unintended
Collectives. [Online]. http://jevbratt.com/the_voice/the_voice_cat.pdf

[2] Jonathan Harris and Sep Kamvar. (2005, August) We Feel Fine. [Online].
http://www.wefeelfine.org

[3] Kevin Hansen. (2007) Secret Regrets. [Online].
http://secondchanceonline.blogspot.com/

[4] Frank Warren. (2005, January) Post Secret. [Online].
http://www.postsecret.com

[5] Jane Mulfinger and Graham Budgett. (2005) REGRETS. [Online].
http://regrets.org.uk/

[6] A. Java and X. Song, "Why we twitter: understanding microblogging
usage and communities," in WebKDD Workshop on Web Mining, San
Jose, CA, 2007, pp. 56-65.

[7] Bernardo Huberman, Daniel Romero, and Fang Wu, "Social Networks
that matter: Twitter under the microscope," 2008.

[8] Courtenay Honeycutt and Susan C. Herring, "Beyond Microblogging:
Conversation and Collaboration via Twitter," in 42nd Hawaii
International Conference on System Sciences, Hawaii, 2009, pp. 1-10.

[9] Internet Archive. (1996) Wayback Machine. [Online].
http://www.archive.org/web/web.php

[10] Steve Lohr, "Library of Congress Will Save Tweets," New York Times,
Arpil 2010.

[11] Tom Scott. (2009) Tweleted. [Online]. http://tweleted.com

[12] Inc Yahoo. (2010) Yahoo! Pipes. [Online]. http://pipes.yahoo.com

 38

[13] IBM Visual Communication Lab. (2004) Manyeyes. [Online].
http://manyeyes.alphaworks.ibm.com

[14] Angus Forbes, "Behaviorism," Santa Barbara, CA, MS Thesis 2009.

[15] Alan Newberger and Jeffery Heer. (2007) Prefuse. [Online].
http://prefuse.org

[16] Twitter. (2010) Twitter API Wiki. [Online].
http://apiwiki.twitter.com/Streaming-API-Documentation

[17] Martin Hepp. (2010, February) Hyper Twitter: Weaving a web of linked
data, tweet by tweet. [Online]. http://semantictwitter.appspot.com/

[18] Teng-Sheng Moh and Murmann Alexander J., "Can You Judge a Man by
His Friends? - Enhancing Spammer Detection on the Twitter
Microblogging Platform Using Friends and Followers," in Information
Systems, Technology and Management, vol. 4, Bangkok, 2010.

[19] Wikipedia Contributors. (2010, May) Levenshtein Distance. [Online].
http://en.wikipedia.org/w/index.php?title=Levenshtein_distance

[20] Ruby Community. (2010) Ruby Programming Language. [Online].
http://ruby-lang.org

[21] Masatoshi Seki. (2003) Distributed Ruby Documentation. [Online].
http://www.ruby-doc.org/stdlib/libdoc/drb/rdoc/index.html

[22] UC Berkeley CNMAT. (2002) Open Sound Control. [Online].
http://opensoundcontrol.org

[23] Bryan Ford, Pyda Srisuresh, and Dan Kegel, "Peer-to-Peer
Communication Across Network Address Translators," in USENIX
Annual Technical Conference 2005, 2005.

[24] SBBI. (2006, Nov.) UPnPlib. [Online].
http://www.sbbi.net/site/upnp/index.html

[25] George Legrady. (2005) Making Visible the Invisible. [Online].
http://www.mat.ucsb.edu/~g.legrady/glWeb/Projects/spl/spl.html

 39

[26] Antony Unwin, "Interacting With Graphics," in Graphics of Large
Datasets.: Springer, 2006, p. 77.

[27] Casey Reas and Ben Fry. (2010) Processing. [Online].
http://processing.org

[28] Ben Schneiderman, "The Eyes Have It: a Task by Data Type Taxonomy
for Information Visualizations," in Proceedings of the 1996 IEEE
Symposium on Visual Languages, College Park, MD, 1996, p. 336.

[29] Edward Tufte, Beautiful Evidence., 2006.

[30] Edward Tufte, Envisioning Information.: Graphics Press, 1990.

[31] Edward Tufte, "Theory of Data Graphics," in Visual Display of
Quantitative Information, 2nd ed.: Graphics Press, 2001, p. 98.

[32] Daniel C. Howe. (2010) RiTa. [Online]. http://www.rednoise.org/rita/

[33] David Crystal, Language and the Internet.: Cambridge University Press,
2001.

[34] Susan B. Barnes. (2006, September) A Privacy Paradox: Social
Networking in the United States. [Online].
http://firstmonday.org/issues/issue11_9/barnes/index.html

[35] Sapna Kumar, "Website Libel and the Single Publication Rule," The
University of Chicago Law Review, no. Spring, pp. 639-662, 2003.
[Online]. http://www.jstor.org/stable/1600592

[36] Torill Mortensen and Jill Walker, "Blogging Thoughts: Personal
Publication as an Online Research Tool," in Researching ICTs in Context,
Andrew Morrison, Ed.: InterMedia Report, 2002, pp. 267-279.

[37] Franco Moretti, Graphs, Maps, Trees: abstract models for a literary
history. London: Verso, 2007.

[38] Wikipedia Contributors. (2010, May) Horizon Group v. Bonnen.
[Online]. http://en.wikipedia.org/wiki/Horizon_Group_v._Bonnen

 40

[39] Twitter, Inc. (2009, September) Twitter Terms of Service. [Online].
http://twitter.com/tos

[40] Twitter. (2010) Developer Rules of the Road. [Online].
http://dev.twitter.com/pages/api_terms

[41] Twitter, Inc. (2009, January) How to Delete a Tweet. [Online].
http://help.twitter.com/forums/10711/entries/18906

[42] Alec Go, Richa Bhayani, and Lei Huang, "Twitter Sentiment
Classification using Distant Supervision," Stanford University, Paper
2009.

[43] Microsoft Research. (2010) Twahpic. [Online].
http://twahpic.cloudapp.net/S4.aspx

[44] Knallgrau New Media Soultions. (2006) Java Text Categorization
Library. [Online]. http://textcat.sourceforge.net/

[45] Memcached team. (2010) Memcached. [Online].
http://www.memcached.org/

 41

Appendix

A) Twitter Data
Below is an example of data that Twitter sends for each tweet in the streaming API,
in JSON format. It includes the nested User object as well as an example of the
geotagging feature which is not yet widely-adopted by Twitter users.

{
 "contributors": null,
 "created_at": "Thu Apr 29 22:53:35 +0000 2010",
 "source": "<a href=\"http://ubertwitter.com\"
rel=\"nofollow\">UberTwitter",
 "in_reply_to_status_id": null,
 "place": null,
 "geo": {
 "type": "Point",
 "coordinates": [
 56.419056,
 -3.40316
]
 },
 "in_reply_to_screen_name": null,
 "user": {
 "profile_background_tile": false,
 "friends_count": 127,
 "description": "",
 "lang": "en",
 "favourites_count": 26,
 "verified": false,
 "created_at": "Thu Nov 20 02:36:19 +0000 2008",
 "profile_background_color": "9ae4e8",
 "following": null,
 "profile_text_color": "000000",
 "url": null,
 "statuses_count": 7038,
 "time_zone": "Edinburgh",
 "profile_link_color": "0000ff",
 "profile_image_url":
"http://a1.twimg.com/profile_images/456261026/twitterProfilePhoto_normal.jp
g",
 "geo_enabled": true,
 "notifications": null,
 "followers_count": 63,
 "protected": false,
 "location": "Anywhere you are!!",
 "contributors_enabled": false,
 "profile_sidebar_fill_color": "e0ff92",
 "screen_name": "fifinoir",
 "name": "fiona",
 "profile_background_image_url":
"http://s.twimg.com/a/1272044617/images/themes/theme1/bg.png",
 "id": 17502304,
 "utc_offset": 0,
 "profile_sidebar_border_color": "87bc44"
 },

 42

 "in_reply_to_user_id": null,
 "coordinates": {
 "type": "Point",
 "coordinates": [
 -3.40316,
 56.419056
]
 },
 "truncated": false,
 "id": 13094530000,
 "favorited": false,
 "text": "Ok back not getting too bad. Hopefully I'll get some sleep."
 }

B) Aether Data
B.1) Tweet
Every tweet received is stored as its own object along with a small subset of user
information to make retrieval easier.
Identifier: Tweet ID

User ID
User details: Tweet source (program used to send the tweet)
Time: Time sent, time deleted in UTC

User UTC offset for adjusting to local time
Lifetime (number of seconds before tweet was deleted)

B.2) User

User objects contain a subset of the fields that Twitter sends with each tweet. Users
are stored separately to track how many times each person has deleted a status.
Identifier: Twitter user account ID
User details: Screen name (account name)

Display name (supposedly their real name)
Location string (not geocoded)
Biographical description
Profile image URL

Time: UTC offset in seconds
Created_at (time registered)

Counts: Friends, Followers count
Statuses count
Count of deleted tweets from this user (that we know
of)

B.3) Event
Events are created from a recovered deleted tweet. They contain a mixture of official
Tweet and User data as well as derived metrics.
Identifiers: Tweet ID

User ID
Text: Original text

“Word text” – original text, minus punctuation and
 non-word tokens (URLs, hashtags, etc)
“typo text” –The tweet that replaced this one if this
 is a typo
Extracted Hashtags, URLs, Mentions

Time: Time sent, time deleted in UTC

 43

User UTC offset for adjusting to local time
Lifetime (number of seconds before tweet was deleted)

User details: Screen name
Biographical description
Location string
Geocoded location (latitude & longitude)
Tweet source (program used to send the tweet)
Profile image URL

Counts: Friends, Followers count
Count of deleted tweets from this user (that we know
of)

Other tweets: A set of tweets sent before and after the deleted
tweet, retrieved at recovery time.
Useful for building context.

C) Aether OSC API
All communication between clients and the Aether server takes the form of OSC
message passing. Sending a message to an address on the server will usually result in
the server sending one or more messages back to the client. Except for initial
registration, the client must include the unique client ‘key’ with each message for
verification.

C.1) Server side (messages from client)
/client/register [IP] [port] Initial registration – tell server

where client is listening.
/client/deregister [key] Goodbye message – tell server to stop

communication.
/client/hello [key] Periodic keep-alive message to ensure

reliable communication. Should be sent
at least once per minute.

/event/latest [key] Request the most recent event.
/event/random [key] Request a random event from the recent

history buffer.
/event/history [key] Request full history buffer (50+

events).
/rate [key] Request most recent datarate.

C.2) Client side (messages from server)
/client/register/id [key] Server confirms registration & sends

unique client key.
/event/latest [event json] A specific non-history event.
/event/history/start [expected n] Signify the beginning of history

messages. Include the expected number
of messages.

/event/history/event [event json] One event from the history buffer.
/event/history/end [actual n] Signify that all history messages are

sent, with count of actual events
successfully sent.

/rate [rate json] A hash of data rates, sent frequently.

