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Algorithmic Images:  
Artificial Intelligence  
and Visual Culture 
ANTONIO SOMAINI 

Since the beginning of the 2010s, the vast field of digital images has been 
increasingly impacted by different kinds of deep-learning algorithms—one 
of the forms of so-called artificial intelligence (AI)—that profoundly trans-
form the ways in which images are captured, generated, modified, and 
seen. Computer vision and its application in machine-vision technologies 
are now capable of detecting and recognizing objects, places, bodies, and 
faces within the billions of images circulating across the internet, even when 
they do not appear on screens and are not visible to human eyes. Today’s 
smartphones are equipped with different AI features that automatically 
modify and correct captured images on the basis of recurrent patterns and 
preferences that have been statistically detected across social-media plat-
forms. Deep-learning models can automatically generate images from text 
or vice versa. Massive datasets made of billions of images, texts, and text-
image pairs scraped from the internet are used to train these models, thus 
influencing their visual and textual output, gradually turning our culture 
into a huge feedback loop in which what has already been uploaded to the 
internet conditions future AI-generated content. 

Each one of these phenomena has profound implications all across the 
field of contemporary visual culture. Machine vision introduces a new 
form of automated visual perception that decenters the human gaze and 
reorganizes the field of the visible, redrawing the lines that separate what 
can from what cannot be seen. AI features embedded in smartphones blur 
the distinction between image capture and image processing, and promote 
new forms of standardization. Deep-learning models introduce new ways 
of connecting images to other images, images to texts, texts to images, and, 
ultimately, people to people through the mediation of images and texts. 
Techniques of image generation, processing, and editing in fields such as 
illustration, graphic design, photography, video, and film are being quickly 
transformed and in some cases entirely replaced by new forms of so-called 
prompt engineering. All the research fields that deal, from different per-
spectives, with the study of images and visual media are suddenly faced 
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76 Grey Room 93

with the possibilities opened up by algorithms capable of analyzing and 
classifying images within vast image databases, but also with the questions 
raised by the limits and the biases of these algorithms, as well as by an 
entirely new array of AI-generated images and image operations. 

All this is happening at a pace that was hardly imaginable just a few 
years ago. Still, our feeling of surprise and even stupor will not last long. 
Deep-learning technologies operating on images will soon become the 
“new normal,” and distinguishing the lines of continuity and the moments 
of rupture that define their position within the longer history of images and 
vision will be more difficult. In some cases, they will become standard  
digital tools (as, for example, has already happened with technologies such 
as QR code reading) and may no longer be considered “artificial intelli-
gence,” since the meaning of the term has been continually shifting.1 

We are now poised on a threshold and have an opportunity to make 
sense of these developments. Before these transformations become invisi-
ble, before they sink to the deeper layers of our digital infrastructure, before 
they are replaced by even further transformations, we can stop for a moment 
and try to understand what is happening.  

In what follows, I describe the main kinds of deep-learning algorithms 
that are behind the current transformations and explain in simple terms 
how they function and how they have been applied within visual culture 
at large and within a series of contemporary artistic practices that may be 
particularly relevant in helping us navigate this new landscape. The impact 
of these algorithms on images is so profound that it raises a series of key 
aesthetic, epistemological, ontological, and political questions that need to 
be tackled from both theoretical and media-archaeological perspectives.2 

We need not only to understand what properties an image must have if 
it is to be analyzed, generated, or modified by deep-learning algorithms but 
also to map and study the various operations in which images processed by 
such algorithms are involved. 

We also need an analysis of the main deep-learning algorithms dealing 
with images and of the datasets used to train them. On the one hand, it is 
important to understand the structure of these algorithms and the different 
intertwinings between human and nonhuman agencies that regulate their 
functioning, giving them different degrees of autonomy. On the other hand, 
we have to study the sources, the content, and the guiding criteria of the 
datasets that are used to train such algorithms: both the ones used for 
machine-vision applications (to better understand what they can and  
cannot “see,” their biases, and their contribution to various forms of algo-
rithmic governmentality and discrimination) and the ones used to generate 
or modify images (to understand how the images and the text-image pairs 
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contained in these datasets condition their outputs).3 
The choice, reflected in the title of this article, of the term algorithmic 

images has a specific aim: it foregrounds the fact that, within the current 
media landscape, the status, the agencies, and the affordances of images 
across contemporary visual culture—the ways in which images are cap-
tured, modified, circulated, and seen within different social and cultural 
contexts—are intrinsically connected to their being processed by deep-
learning algorithms trained with large datasets.4 

The study of such “algorithmic images” leads me both to introduce in a 
theory of images and visual culture concepts stemming from the field of 
machine learning, and to reconsider, from the perspective of the current 
transformations, a series of key concepts and issues in fields such art  
history, visual-culture studies, photography, film, and media theory. 

Concepts from the field of machine learning that need to be introduced 
to a theory of images and visual culture include those of the dataset, the 
training set, embedding, conditioning, alignment, hallucination, and inter-
polation. A particularly important one is that of “latent space”: the abstract, 
multidimensional space in which deep-learning algorithms turn digital 
objects (e.g., the vast quantities of images and texts that have been uploaded 
to the internet) into latent representations so that they can be processed and 
used to generate new digital objects (e.g., new images and new texts).5 
Latent representations are made of vectors; that is, long lists of numbers 
that define the coordinates of the digital objects encoded and embedded in 
latent space and their relations of distance and proximity within it, just as 
the three coordinates x, y, and z define the position of a physical object in 
three-dimensional space and its relations to other physical objects. In the 
coming years, understanding the dynamics of a culture more and more 
innervated by deep-learning algorithms and examining the ways in which 
it processes vast amounts of visual and textual traces that the past has left 
on the internet will become impossible without recognizing the key role of 
this abstract, unintuitive, multidimensional space within which preexisting 
images and texts are embedded, positioned, and processed, and out of 
which a wide spectrum of new images and new texts may emerge. 

Among the concepts and issues stemming from disciplines such as art 
history, visual-culture studies, photography, film, and media theory that 
may be reconsidered from the perspective of the impact of deep-learning 
algorithms on images, we find not only the concepts of image and vision, 
but also concepts such as resemblance, imitation, original versus copy, 
index versus indexing, referent, objectivity, style, abstraction versus figu-
ration, realism and photorealism, as well as the question of the nature of  
the artist’s agency, authorship, and creativity in the context of complex 
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interactions with algorithms that have various degrees of autonomy. 
Deep-learning algorithms are also recalibrating the relations between 

images and words, the visible and the textual, since their functioning 
depends, in one way or another, on the availability of vast quantities of 
images that are systematically indexed, labeled, and captioned and then 
gathered in large datasets. At stake is therefore a future visual culture in 
which images and words are increasingly algorithmically connected and 
inseparable. 

Finally, reflecting on the impact of deep-learning technologies on images 
can also help us understand what role AI-generated images play in making 
“artificial intelligence” itself visible: either to make it somehow more trans-
parent and comprehensible, or to explore its image-generating potential, or 
to capture and divert our attention through seductive visual surfaces and 
different forms of “art washing” that may help disguise its most problematic 
implications as a technology of surveillance, prediction, discrimination, 
and job replacement. 

Artificial Intelligence, Images, and Vision 
First used in 1955 in the project proposal for the Dartmouth Summer 
Research Project on Artificial Intelligence (1956), the term artificial intelli-
gence refers today to a field that developed over the following decades as a 
complex network of theories, technologies, and applications, surrounded 
by a spectrum of discourses, narratives, and imaginaries.6 

As researchers in the second half of the 1950s worked to develop an 
intelligence that was “artificial” (i.e., technically produced, nonbiological), 
two main approaches emerged: a “symbolic” approach and a “subsymbolic” 
or “connectionist” approach. They differed not only in how each under-
stood the very idea of an “artificial intelligence” but also for a series of tech-
nical, institutional, economic, and political reasons that, over the following 
years, heavily conditioned the allocation of funding.7 

The “symbolic” approach was grounded in the traditions of mathematical 
logic, systems engineering, and cybernetics and based on the idea that  
computers could reproduce some rational aspects of human thought (e.g., 
solving problems, making judgments, taking decisions) through symbol-
processing programs (i.e., programs based on rules and performing opera-
tions on symbols and combinations of symbols).8 Promoted by the 
organizers of the Dartmouth workshop (John McCarthy, Marvin L. Minsky, 
Nathaniel Rochester, and Claude E. Shannon), this approach dominated 
research and funding from the late 1950s to the mid-1990s. 

In contrast, the “subsymbolic,” “connectionist” approach was grounded 
in a tradition that combined mathematics, statistics, cognitive psychology, 
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and neuroscience and was based on the idea that “artificial intelligence” 
could be conceived as a form of “machine learning”; that is, the use of com-
puter algorithms that are capable, through inductive sequences of trials and 
errors, of learning how to recognize patterns within given datasets so as to 
make predictions on newly given data. The structure of these algorithms 
imitates, in a streamlined and schematic way, the connections between bio-
logical neurons, and for this reason they are called “artificial neural networks.” 

Today, among the multiple approaches adopted by technologies labeled 
as “artificial intelligence,” the dominant ones tend to be connectionist. The 
algorithms they employ are “deep,” multilayered, artificial neural networks, 
and the form of “machine learning” they activate is therefore called “deep 
learning.” Fueled by technologies that use large quantities of planetary 
resources, trained through various kinds of human labor and through large 
datasets whose structure, content, and guiding principles raise a whole 
series of ethical and political issues, these deep-learning algorithms are 
deployed to introduce various forms of automation and prediction in areas 
where large amounts of data need to be processed.9 

The fields of application for deep-learning algorithms are currently as 
vast, diverse, and complex as the very fabric of our culture. They include 
auditory perception, through forms of machine listening that automatically 
recognize voices, sounds, and noises; “natural” (i.e., human, instead of 
machine code–based) language processing, through so-called large lan-
guage models (LLMs) capable not only of synthesizing and translating exist-
ing texts but also of generating new texts starting from textual prompts; 
musical composition, with systems capable of completing unfinished 
works or of generating new works “in the style of” a given musician or  
tradition; strategic game systems, such as the ones developed to play chess, 
Go, or Atari videogames; advanced web search engines; recommendation 
systems; targeted online advertising; email spam filters; so-called virtual 
assistants (such as Siri and Alexa); robotics and driverless vehicle guidance 
(for cars, trucks, drones); the management of energy storage and consump-
tion; automated tools for analysis, prediction, and decision-making in 
fields such as industrial production, supply chain logistics, finance, credit 
rating, medical diagnosis, pharmaceutical research, meteorology, politics, 
and, of course, military operations.10 

Among the fields that are today most impacted by the use of technologies 
labeled as “artificial intelligence,” we find the field of visual culture, a  
term I use here to refer broadly to the roles that images, visual media, and 
visual experience play within various technical, cultural, social, and polit-
ical contexts.11 

Three major phenomena deserve our closest attention. We can list them 
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in the chronological order of their appearance over the last ten years. 

1. Beginning around 2010 (though based on research initiated dur-
ing the second half of the 1950s), deep-learning algorithms such as 
convolutional neural networks (CNNs) began to be systematically 
used to implement systems of “machine vision” that can detect,  
analyze, and classify entities (e.g., objects, places, bodies, faces, ges-
tures, expressions, and actions) represented in images. Technologies 
of machine vision can today be applied to the billions of digital 
images that are accessible through the internet and to the even larger 
number of images that are stored within our digital devices or in 
offline archives, even when these images do not appear on screens 
and therefore are not visible to human eyes. 

2. During the mid-2010s, other deep-learning algorithms, such as 
DeepDream and generative adversarial networks (GANs) were intro-
duced. Their main function is not to analyze and classify images but 
to modify existing images through a series of operations or to generate 
entirely new images that can be photorealistic, hybrid, or completely 
abstract. 

3. In early 2022, new deep-learning models that are part of the 
wider field of so-called generative AI became broadly available. These 
are capable not only of generating both still and moving images from 
texts (i.e., from so-called prompts, as with such text-to-image models 
as DALL-E 2, Stable Diffusion, and Midjourney, and with various text-
to-video applications), but also of generating texts from images (e.g., 
with models that extend the task of image classification to generate 
captions, descriptions, and even short stories starting from a given 
image, answering questions about it, or performing tasks that further 
develop it). 

These three phenomena are currently impacting not only visual culture 
at large but also a whole spectrum of artistic practices, some of which are 
particularly relevant since they tackle, using a variety of strategies, the cru-
cial epistemological and political questions raised by these technologies. 

In order to be processed by deep-learning algorithms, images must pos-
sess two key properties. The first (which has to do with the digitizing of 
images in general) is that images need to be rasterized; that is, reduced to 
an orthogonal grid of pixels, each with its own coordinates (row plus column) 
and color values.12 Reducing an image to an orthogonal grid in which each 
pixel is associated with two coordinates and a set of numerical values is the 
fundamental condition of possibility for an image to be processed by deep-
learning algorithms (this holds for many other digital image-processing 
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applications too). The grid acts here, once more, as a “cultural technique” 
that allows for the localization, the addressing, and the activation of single 
elements in the image.13 All images—whatever their original material  
supports, size, their format, and original contexts of production and  
reception—must be reduced to the technical a priori of the grid so they can 
be turned into data that can be processed. 

The second key property images must possess to be processed by deep-
learning algorithms is that they need to be indexed; that is, images must be 
systematically linked to words (e.g., a label or a caption) that allow them to 
be organized in categories. The existence of vast taxonomies connecting 
images with words is therefore another fundamental a priori for the func-
tioning of all these algorithms, be they CNNs used for machine-vision 
applications, the GANs used to modify existing images or generate new 
ones, or the recent text-to-image and image-to-text models. 

Detecting, Recognizing, Classifying:  
Machine Vision and Operational Images 
Technologies of “artificial intelligence” have been dealing with tasks related 
to images and vision since the beginning. 

In 1957, a year after the Dartmouth workshop at which the term artificial 
intelligence was first used, the psychologist Frank Rosenblatt, working at 
the Cornell Aeronautical Laboratory, developed the Perceptron, a machine 
for automated image recognition.14 A first example of a connectionist, “sub-
symbolic” program of AI, inspired by the studies of Warren McCulloch and 
Walter Pitts on “artificial neurons” (mathematical functions conceived as a 
model of biological neurons), the Perceptron was a single-layer artificial 
neural network whose task was learning how to recognize two-dimensional 
alphabetical characters after having captured them through an orthogonal 
grid of sensors composed of four hundred photocells.15 

Fifty years after the development of the Perceptron, following several 
cycles of enthusiasm and disappointment, investment hype, and funding 
cutbacks (“AI winters”) from corporate, public, and military sources  
(e.g., the Defense Advanced Research Projects Agency), funding and invest-
ment in AI sharply increased at the beginning of the 2010s.16 This new “AI  

spring”—motivated, like the pre-
ceding ones, by a complex series  
of technological, institutional, and 
economic developments—allowed 
machine-vision applications to enter 
a new phase, thanks to the conver-
gence of four different factors. 

Frank Rosenblatt working  
on the camera system of  
the Mark 1 Perceptron, 1960.
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The first factor was the development, already imagined by Rosenblatt in 
1962 but materialized only during the 1970s and 1980s with the Cognitron 
and Neocognitron, of new, “deep” (i.e., multilayered) artificial neural net-
works whose performance was then highly improved by a key feature of 
machine learning, an algorithm for the “back-propagation of error.”17 This 
algorithm makes it possible, once an error (e.g., the misidentification of a 
digit) has been identified in the output of a deep neural network, to trace 
the factors that caused the error, layer by layer, connection by connection, 
in order to correct it by modifying the parameters (the “weights”) that regu-
late the circulation of the inputs and outputs across the various connections. 

The second key factor was the possibility of training such neural net-
works on vast quantities of images downloaded from the internet, system-
atically indexed and then organized in large image datasets. Some of these 
datasets, such as ImageNet, were, during the first half of the 2010s, the  
standard benchmarks for research in machine learning applied to images, 
before being replaced by even larger datasets such as LAION-5B. 

The third key factor was the availability of new forms of distributed 
microlabor, whether performed through CAPTCHAs (Completely Automated 
Public Turing test to tell Computers and Humans Apart) or by people tag-
ging and commenting on images circulating on social media or accessible 
through online labor platforms such as the crowdsourcing marketplace 
Amazon Mechanical Turk.18 This so-called click-work, as it is now well 
known, raises serious ethical and political issues, because it involves large 
quantities of underpaid, underprotected, and even free labor. Beginning with 
the mid-2000s, it provided one of the key steps in the training of machine-
vision technologies: the labeling of the images gathered in the datasets.19 

The final key factor that allowed machine-vision technologies to enter a 
new phase was the introduction, during the early 1990s, of a new genera-
tion of powerful graphics processing units (GPUs): these are specialized 
electronic circuits, which were initially designed to accelerate operations 
of computer graphics and image processing in the domain of real-time  
digital animation in videogames but ended up being one of the key ingre-
dients of the algorithmic processing of images in general. 

Among the deep-learning algorithms that contributed to the rapid devel-
opment of machine-vision technologies at the beginning of the 2010s, a key 
role was played by CNNs. Understanding, even if only schematically, how 
they operate in detecting, recognizing, and classifying the entities repre-
sented in images is crucial if we are to better grasp the possibilities and  
limitations of machine vision.20 

Strictly speaking, the goal of a CNN used for a machine-vision task is to 
recognize a particular group of pixels in a digital image as representing a 

A convolutional neural network 
(CNN). Diagram by the author.
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particular object category, such as “human face,” “cat,” “tree,” “table,” 
“church,” and so on. Object categories can have multiple levels of generality 
(“cat,” “Siamese cat,” “female Siamese cat”) and can also refer to individual 
objects and individual people (“Notre-Dame Cathedral,” “Barack Obama”). 

The functioning of a fully trained CNN applied to a task of machine 
vision unfolds in two parts: feature extraction and classification. 

At the beginning of the feature extraction process, an initial input— 
a digital image (say, the image of a cat)—is organized as an orthogonal grid 
of pixels, each with its own coordinates and numerical values. The size of 
the image (i.e., the number of pixels in the orthogonal grid) must be equal 
to the size of the first layer of the artificial neural network (the number of 
inputs it can receive). 

Once an image is provided, the different layers of the CNN begin to ana-
lyze it. Each feature of the given image is targeted by a specific artificial 
neuron within each layer of the network. The neurons of the initial (lower) 
layers have the task of detecting simpler features (e.g., lines, curves, corners, 
or edges—that is, the boundaries between two contrasting image regions). 
If these simple features are detected, if a certain “activation value” (expressed 
in numbers) is reached (by multiplying the value of each neuron of a given 
layer by its weight), the neurons are activated and transmit their input to 
the further (higher) layers. These, in turn, are in charge of detecting more 
and more complex features (e.g., shapes, surfaces, volumes, textures, and 
then entire objects, individual faces, and so on). The flow of activations 
between the different layers of a CNN—the result of sequences of mathe-
matical operations called “convolutions”—proceeds both through feed- 
forward activations (from lower to higher layers) and through feed-backward 
activations (from higher to lower layers). 

The second part of the process, classification, is performed by another 
kind of neural network, called a “classification module.” Based on the 
inputs received from the higher layers of the CNN, it produces as output a 
classification based on a certain percentage of confidence. 

To perform the two operations (feature extraction and classification), 
CNNs need to be trained to recognize either a single object category or mul-
tiple object categories, including eventually texts, code, and mathematical 
formulas that might appear in an image. If, for example, “cat,” “horse,” and 
“dog” are among the categories the network has been trained to recognize, 
the (probabilistic) output from the analysis of an image of a cat might be 
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“cat 70%, horse 20%, dog 10%.” In machine-vision applications, such 
training—which goes through many phases or “epochs”—is either super-
vised or unsupervised, depending on the role human labor plays in the  
various stages of the process.21 

Understanding the inner workings of CNNs is extremely difficult if not 
impossible, since these deep, multilayered neural networks may have mil-
lions of “neurons” and an even larger number of interconnections between 
them. The forward and backward flow of information between the layers 
may unfold through thousands of iterations, making them even more 
opaque and inaccessible. CNNs are thus a typical example of “black box” 
deep-learning models that cannot be fully interpreted.22 

Instead, the structure and content of the datasets used for their training 
may be analyzed, although this is possible only through samples, since the 
number of images contained in the datasets may be on the order of millions 
or, in the most recent datasets, even billions. 

Training sets play an essential role in defining the “epistemic space” of 
CNNs: the series of entities they can detect and classify within images and 
the words the network uses for such classification. The selection, labeling, 
and taxonomic grouping of the large quantities of discrete images contained 
in the training sets play a crucial normative role in distinguishing between 
what can be seen and named by a CNN and what remains unseen and 
unnamed. In many cases, what remains unseen and unnamed may be within 
the image itself. A neural network, for example, may be capable of recog-
nizing an apple in an image but not the plate it sits on nor the table on 
which the plate rests. 

To better understand this articulation between detecting and classifying, 
seeing and naming, consider ImageNet, the vast image dataset that allowed 
CNNs to reach a near-complete dominance in the field of machine vision in 
the early 2010s, replacing earlier, smaller datasets that were based on a 
more limited number of object categories.23 

ImageNet, created at Stanford University by a team of computer scien-
tists led by Fei-Fei Li, was presented for the first time in 2009.24 Its explicit 
aim was to “map out the entire world of objects.”25 The statement highlights 
a search for cartographic totality that is not only highly questionable—it 
implies that one can establish a complete list of all objects, that they are all 
visible, and that they can all be represented by an image—but is further 
undermined when one takes a closer look at the sources, structure, and 
multiple embedded biases of the dataset. 

As Kate Crawford and Trevor Paglen show in their “Excavating AI: The 
Politics of Images in Machine Learning Training Sets,” ImageNet is an 
emblematic example of the fact that “every layer of a given training set’s 
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architecture is infused with politics.”26 With its fourteen million images 
downloaded from the internet without prior clearance from their authors, 
then labeled by tens of thousands of clickworkers hired through Amazon 
Mechanical Turk and asked to use an interface that invited them to select 
“photos only, no painting, no drawing,” and finally organized in twenty-
one thousand categories and subcategories based on nouns of the English 
language as they appear in the WordNet hierarchy, ImageNet is far from 
being an objective mapping of “the entire world of objects.”27 Instead, it is 
the result of multiple layers of technical determinations and human evalu-
ations, judgments, decisions, and biases.28 The conclusion Crawford and 
Paglen draw from their analysis is that “understanding the politics within 
AI systems matters more than ever, as they are quickly moving into the 
architecture of social institutions” which are involved in various activities 
of surveillance, monitoring, control, selection, and prediction.29 

Since the early 2010s, machine-vision technologies have been increas-
ingly applied to the immense field of machine-readable images, a field 
whose dimensions may be imagined only if we understand that, poten-
tially, any digital image—whether accessible through the internet or stored 
in our devices, whether produced through some kind of lens-based optical 
recording or entirely computer-generated or a mix of the two, as is often the 
case—may be analyzed by machine-vision technologies. All the main 
smartphone producers have equipped their devices with cameras and 
image-processing technologies that turn every photograph we take into a 
machine-readable image and use machine-vision applications to either 
search through the photographs and videos one has taken or to search the 
web starting from a given image. Social-media platforms use machine-
vision systems to extract data from the images and videos uploaded by 
users, while private companies (e.g., the controversial Clearview AI) offer 
state agencies and private clients machine-vision and face-recognition sys-
tems capable of analyzing the immense quantity of photographic images 
that can be found on the internet and that continue to be uploaded every 
day, raising all sorts of ethical and political issues and highlighting the need 
for a broader legal framework that for the moment is largely missing.30 

Considered together, machine-vision systems are turning the contempo-
rary digital “iconosphere” into a vast field for data mining and analytics in 
which objects, places, bodies, faces, expressions, gestures, and actions—as 
well as voices and sounds, through technologies of machine listening—may 
be detected, analyzed, labeled, classified, stored, retrieved, and processed 
as data that can be quickly accessed and activated for a wide variety of pur-
poses and operations: from surveillance to policing, from marketing to 
advertising, from the monitoring of industrial processes of manufacturing 
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and distribution to the functioning of driverless vehicles (cars, drones, and 
robots), from medical diagnostics performed through the automated analysis 
of medical imaging all the way up to various military applications. 

Machine-vision applications have also been used, for a few years now, 
in various fields in the humanities: from art history to the history of pho-
tography, film, and audiovisual media.31 Scanning vast corpuses of still and 
moving images, they may search not only for bodies and objects but also for 
colors, textures, configurations of light and shadow, degrees of sharpness 
and blurredness, and then movements, postures, gestures, actions, facial 
expressions, all the way up to recurring motifs and styles.32 In analyzing 
moving images, they may also detect different kinds of shots (e.g., close-up, 
medium, and long shots), camera movements, and editing techniques. The 
traditional skills of art connoisseurship are also being transformed by new 
forms of so-called AI art authentication that may help attribute a painting, 
reconstruct its date of production, and detect copies and duplicates.33 

Considered from the point of view of an epistemology of art history and 
image analysis, these applications of machine vision, with their stated goal 
of “provid[ing] additional objectivity derived from quantitative and com-
putational processes,” raise a whole series of questions.34 

To be studied through machine-vision technologies, artworks must 
undergo an ontological transformation. Their concrete materiality, their 
techniques, and their dimensions are all reduced to digital images, i.e., to 
orthogonal grids of pixels, each with a unique set of coordinates and values. 
Two- or three-dimensional visual forms are segmented and turned into data 
(i.e., numerical values that can be computed by algorithms). The highly 
complex notion of “style”—whether the style of a single artist, of an artistic 
movement, or of a historical period—is untethered from its sociohistorical 
determinations and from questions of technique, materiality, and facture so 
it can be reduced to a series of recurring pixel patterns that may become the 
object of some form of computational pattern recognition. More broadly, 
what used to be an analysis developed by a human observer—even though 
often through the aid of various technical tools, such as photographic repro-
ductions, double slide projections, close-ups, and, in the case of moving 
images, slow motion and freeze-frame—turns into a process of formal 
analysis in which human vision is decentered and repositioned and in 
which the focus is on algorithmic operations that tend to leave out “what 
remains irreducible to quantification and computation, and what cannot be 
explained in quantitative terms.”35 

From the point of view of a theory and history of images and vision,  
a crucial turning point in the recent development of machine-vision tech-
nologies is the fact that they increasingly operate in circuits that connect 
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machines directly to other machines and trigger various kinds of operations 
without necessarily generating images that are visualized on screens and 
therefore made visible for human eyes. Machine-vision technologies may 
operate on images generated by machines for other machines—without 
human eyes ever being involved (as in the case of a camera that monitors a 
production line and activates some technical intervention if it detects  
a mistake)—or by humans for other humans (as in the case of a photograph 
taken and then shared on social media to trigger reactions such as likes, 
tags, and comments). In this second case, machine-vision technologies 
remain active even when the images have become invisible. Images 
uploaded to the internet may keep fueling algorithmic systems of data  
collection and analytics even after they have ceased to appear on screens 
(as with an image on a website with no visitors or a social media post that 
is no longer looked at). 

With the proliferation of deep-learning technologies, the vast field of  
so-called instrumental and operational images undergoes a profound trans-
formation.36 In a series of texts and video installations of the early 2000s, 
Harun Farocki defined operational images as “images without a social goal, 
not for edification, not for reflection”; that is, images that “do not represent 
an object, but rather are part of an operation.”37 Installations such as 
Eye/Machine I, Eye/Machine II, and Eye/Machine III (2001–2003), Counter 
Music (2004), Deep Play (2007), and Serious Games I–IV (2009–2010) intro-
duced the viewer to a vast array of operational images circulating across 
various technical, industrial, scientific, entertainment, and military contexts. 
Farocki meticulously gathered, reorganized, and exposed these images, 
which still appeared on screens. Today, as Paglen underlines in an essay 
written shortly after Farocki’s death, operational images do not need to be 
visible to be active.38 Their role in the collecting and processing of visual 
data needs less and less to be monitored and validated by a human viewer. 

This has a direct impact on the very concepts of “image” and “vision.” 
Can we still use the term image for a digital file, encoded in some image  
format, that is machine-readable even when it is not visible by human eyes 
or becomes visible on a screen as a pattern of pixels only for a small fraction 
of time, spending the rest of its indefinite lifespan circulating across  
invisible digital networks? What becomes “vision” when the human psy-
chophysiological process of seeing is converted, in the case of machine-
vision technologies, to automated operations of pattern recognition and 
labeling, and when the various applications of such operations may be 
deployed across vast quantities of digital images that no human eye could 
ever see in their entirety? By using the term vision within the concept of 
machine vision, are we mistakenly using a metaphoric term that should be 
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discarded in favor of a different set of technical terms, ones specifically 
related to the fields of deep learning and data analysis? 

Authors such as Andreas Broeckmann (with his notion of “optical  
calculus” as “an unthinking, mindless mechanism, a calculation based on 
optically derived input data, abstracted into calculable values, which can 
become part of computational procedures and operations”), Adrian 
MacKenzie and Anna Munster (who describe machine vision as a form of 
“platform seeing” that targets vast “image ensembles” through an “invisual 
perception”), and Fabian Offert and Peter Bell (who underline the unique 
specificity of the “deeply-non-human” “perceptual topology” of machine-
vision systems) have all argued for the need to move beyond anthropocen-
tric frameworks and terms, highlighting the radical differences between 
machine vision and human vision.39 

Using the term vision in machine vision, though, has an undeniable 
heuristic and hermeneutic value. It invites us, for example, to position 
machine-vision technologies in the longer history of visual media that were 
used to enhance, decenter, or entirely replace human vision through tech-
nical means.40 The use of the term vision also underlines the importance of 
trying to visualize, for human eyes, the “invisual perception” of machine-
vision technologies. 

Some of the most interesting attempts in this direction can be found in 
Paglen’s videos, exhibitions, and writings (often in collaboration with 
Crawford).41 In a text titled “Invisible Images (Your Pictures Are Looking at 
You),” Paglen describes a new landscape in which “images are made by 
machines for other machines, with humans rarely in the loop” and draws 
the following conclusion: “If we want to understand the invisible world of 
machine-machine visual culture we need to unlearn to see like humans. We 

Trevor Paglen. Behold 
These Glorious Times! 2017. 
Still from single-channel 
color video projection, 
stereo, 10 min.; original 
score by Holly Herndon.  
© Trevor Paglen. Courtesy 
the artist; Altman Siegel, 
San Francisco; and Pace 
Gallery.
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need to learn how to see a parallel universe composed of activations, key-
points, eigenfaces, feature transforms, classifiers, training sets, and the like.”42  

A video such as Behold These Glorious Times! (2017) brings together, 
through fast editing and a grid-like projection, thousands of images stem-
ming from various machine-vision training sets, showing how, in some 
cases, human beings themselves had to be trained to perform in front of a 
camera facial expressions and bodily postures that would then be used to 
train algorithms.43 Another video, titled Image Operations. Op.10 (2017), 
highlights the radical difference between human sensory perception  
and machine vision. Faced with the performance of a string quartet, the 
machine-vision system, for which sound does not exist, focuses on the 
faces, expressions, and gestures of the musicians, trying to detect their age, 
their emotions, and the objects they are holding. Other images from the 
same video try to visualize what the CNN is “seeing”; that is, the way it 
begins to analyze, in a given image, simple features before gradually mov-
ing to more complex ones.44 

Images from Images: Latent Space Visualizations 
The possibility of using deep-learning algorithms to generate images—
rather than to analyze and classify them—was highlighted in 2014 and 
2015 by the introduction of two algorithms whose images began quickly to 
proliferate across the internet. In both cases, the new images generated by 
these algorithms are deeply related to the images contained in the datasets 
that were used to train them. For this reason, they may be considered to be 
images from images; that is, images produced through the algorithmic pro-
cessing of vast quantities of other images.45 

The first of the two algorithms, called DeepDream, was developed in 
2015 by Google engineers Alexander Mordvintsev, Christopher Olah, and 
Mike Tyka on the basis of a deep CNN architecture called GoogLeNet (also 
known as Inception) that was presented for the 2014 ImageNet Large-Scale 
Visual Recognition Challenge.46 The name “Inception” refers both to the 
2010 science fiction film directed by Christopher Nolan—in which the  

Trevor Paglen. Image Operations. 
Op.10, 2018. Still from single-
channel color video projection, 
5.0 surround sound, 23 min. © 
Trevor Paglen. Courtesy the 
artist; Altman Siegel, San 
Francisco; and Pace Gallery.
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protagonists infiltrate the different layers of their targets’ subconscious to 
plant or extract information—and to a 2014 paper, titled “Network in 
Network,” that explores the consequences of the implementation of embed-
ded internal complex structures within networks.47 

Used to find and enhance faces and other patterns in images, DeepDream 
is a CNN that is run, in a way, in reverse order. Instead of starting with an 
input—that is, with an image that is given to a CNN to analyze and classify 
based on the images it has been trained with—one starts at the other end, 
with the output. After selecting a desired output—for example, the image 
of an animal’s face—one tweaks the parameters of the neural network to 
force it to activate the artificial neurons that detect the various features of 
the animal’s face. If the results of this tweaking and these activations are 
visualized, one sees, in the initial image (e.g., an image of a jellyfish), the 
desired features even if the image was completely devoid of them. If this 
process is reiterated enough times, these features begin to multiply, becom-
ing more and more visible.  

Another alternative to prescribing exactly which feature one wants the 
network to amplify is to let the network itself make the decision, based on 
how it has been trained. After receiving an image, the network begins to 
analyze it, starting from simpler features and moving gradually through the 
various layers of the CNN to more complex ones. If one picks a layer and 
asks the network to enhance what it has detected, some of the image’s  
features, the ones that are related to images of the training set, will become 
more visible. If the operation is repeated, those features will begin to pro-
liferate throughout the image.48 

Initially produced as “technical meta-
pictures” to better understand the structure 
of CNNs and the connections between  
patterns in the image and activations in the 
neurons, the images generated by DeepDream, 
once the algorithm was released as open 
source, began quickly to proliferate across 
the internet, popularizing the question  
of whether an “AI” could be visually “cre-
ative.”49 With their overprocessed, overin-
terpreted, hallucinatory qualities, they were 
seen as an example of “pareidolia”: the 
impression of seeing a pattern (e.g., the shape 
of an animal, a face, or an object) emerging 
from a complex, confused visual stimulus 
such as an ink blot or a cloud formation. In 
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“A Sea of Data: Apophenia and Pattern (Mis-)Recognition,” Hito Steyerl 
sees in these images “a striking visual example of pure and conscious 
apophenia,” i.e., a heightened search for patterns within random data that 
inevitably leads to a form of “pattern overidentification” and in this way 
“reveals the networked operations of computational image creation, certain 
presets of machinic vision, its hardwired ideologies and preferences.”50 

From an art-historical perspective, DeepDream images may be consid-
ered in relation to the long tradition of “images hidden within images,” 
such as images in clouds.51 Over the following years, thanks also to a rather 
superficial formal similarity with the traditions of surrealist and psyche-
delic imagery, DeepDream images contributed to a widespread tendency  
to consider images generated by deep-learning algorithms as a form of 
“dream” or “hallucination” of the “machine,” revealing, in a way, the 
“altered states” of AI itself. References to this idea can also be seen in the 
titles of extremely different artworks, such as Paglen’s Adversarially 
Evolved Hallucinations (2017) and Refik Anadol’s Unsupervised: Machine 
Hallucinations (2021) and Renaissance Dreams (2021).52 

The idea of a “machine hallucination,” though, is not confined to the 
realm of artworks using AI-generated images. Even though clearly metaphor-
ical, hallucination is also a technical term in the language of deep learning. 
A “hallucination” is a situation in which a deep-learning algorithm gives a 
confident response that is not justified by its training data. A CNN trained 
to recognize cats in images that then mistakes a dog for a cat is an algorithm 
that “hallucinates.” A chatbot that gives responses that contain invented 
facts or invented references is also “hallucinating.” As in many other cases, 
complex, unintuitive mathematical processes related to deep-learning algo-
rithms are described through metaphorical, anthropomorphic terms that 
make them somehow perceivable, thereby influencing the cultural and 
political reception of increasingly pervasive technologies labeled as “arti-
ficial intelligence.” 

The second type of deep-learning algorithms that began to be used in the 
mid-2010s to generate and modify images, rather than to classify them, are 
the so-called GANs. First introduced in 2014, their structure is made of two 
multilayer neural networks—called the “Generator” and “Discriminator”—
that compete with each other in a zero-sum game, so that the gain of  
one network is the loss of the other and the sum of gains and losses is 
always zero.53 

The game unfolds as follows: once the Discriminator (which is a CNN) 
has been trained to classify the images of a given initial training set, the 
other network, the Generator, starts producing images that it then submits 
to the Discriminator. The Discriminator then classifies the new images on 

The image of a jelly fish (a) and 
the same image after applying 
several iterations of the 
DeepDream algorithm (b).
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the basis of what it has learned from the training set, giving for each image 
submitted to it a numerical response between the extremes of 0 (“no,” the 
image produced by the Generator does not belong to the initial training set; 
it is “false”) and 1 (“yes,” the image belongs to the training set; it is “true”). 
The closer the numerical response is to 1, the more the images produced by 
the Generator resemble those of the training set; the closer the numerical 
response is to 0, the less similar they are, while between 1 and 0 are several 
degrees of uncertainty.   

At the beginning of the process, the Generator is given a latent space in 
which images have been embedded based on a series of parameters. If, for 
example, the images are photographs of birds, the embedding may be based 
on parameters that refer to the different shapes that birds may have in dif-
ferent positions, their different colors, and so on. From this initial latent 
space, the Generator begins by generating images that look like random 
noise; that is, random pixel configurations. Then, based on the responses 
received from the Discriminator, the Generator learns how to tweak its own 
parameters to generate from the latent space new images that look more and 
more like images of birds. 

These exchanges take place in a process that resembles a real competi-
tion between “opponents.” The Discriminator wins the game if it becomes 
capable of correctly determining whether the images produced by the 
Generator are identical or not to the ones of the initial training set.  
The Generator wins if it becomes capable of generating images that “fool” 
the Discriminator, leading it to give incorrect classifications. 

The learning process of GANs is therefore interactive and relational, to 
some extent “social,” since it involves two “agents” (two algorithms) that 
are in competition with and react to each other’s actions.54 Its functioning 
is based on a dual and competitive structure, and the speed of its learning 
depends on the number of exchanges between the Generator and the 
Discriminator. At its base, we find a statistical induction process through 
which the Generator learns to produce images whose patterns of pixels are 
more and more similar to the ones of the training set. These new images, 
however, are not “imitations” or “copies” of an “original” in any traditional 
sense of the term, since the Generator does not have direct access to the 
images of the training set: it receives only the responses of the Discriminator, 
which are “yes” or “no” formulated in numerical terms and with different 
percentage values. 
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During the training process of a GAN, the algorithm tweaks its own para-
meters to generate from the latent space different kinds of images. A latent 
space used to generate images is a multidimensional space in which each 
point, with its multiple coordinates described by a vector, may be visual-
ized through an image. Taken together, the images corresponding to all  
the points within a latent space constitute all possible visualizations of the 
space. We can consider all these images as a sort of complete cartography 
or atlas of the latent space, the full map of all the images that a specific 
GAN, trained through the interactions with a specific Discriminator, can 
possibly generate.55 

The content and the formal properties of an image generated by a GAN 
depend on the position, in latent space, of the point the image visualizes. 
Points that are close to one another in latent space generate images that are 
similar to one another; points that are distant from one another generate 
images that are different. 

Connections between points (also called “interpolations”) are instead 
visualized through moving images. What we see in this case, is a trajectory 
within the latent space: a gradual morphing from the image corresponding 
to the point from which the trajectory starts, to the image corresponding  
to the point where it ends. If the trajectory connects points that are close to 
one another in latent space, the moving images appear as a gentle, gradual 
morphing. If instead the trajectory connects distant points, the transitions 
are faster and more abrupt. 

Moving images generated by GANs have their own specificities. Still,  
it is tempting to analyze them through concepts derived from theories of 
time-based visual media such as film and video. The concept of montage, 
for example—with its complex history, its different manifestations, and its 
ideas of “continuity,” “discontinuity,” “conflict,” “tension,” “distance,” 
and “interval”—may be used to analyze moving images that visualize inter-
polations within latent space. Smooth transitions between images that visu-
alize points that are close to one another in latent space may be considered 
a form of montage that emphasizes continuity, while sudden transitions 
that connect points that are distant from one another in latent space intro-
duce forms of discontinuity, of conflict and tension between images. 

For a few years now, GANs have been used either to transform existing 
images through a series of operations or to generate entirely new ones. 

The use of GANs to transform existing images includes different kinds 
of so-called image-to-image translation: translation of satellite photographs  
to Google Maps, of photographs from day to night, of black-and-white pho-
tographs to color, and so on. Some of these translations give the impression 
of transposing an image from one medium to another (e.g., from a drawing 

A generative adversarial network 
(GAN). Diagram by the author.
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to a painting, or to a photograph), while others give the impression of trans-
posing an image from one style (of a single artist, of an artistic movement, 
or of a historical period) to another style, through an operation called “style 
transfer.” Other applications of GANs consist in changing photographs of 
human faces in order to show how an individual’s appearance might 
change with age; animating still images (e.g., the photograph of a deceased 
person); allowing real-time face swapping (superimposing one person’s 
face on another’s body) and face reenactment (manipulating facial expres-
sions), as in the case of deepfake videos; repairing a given image through a 
process of “inpainting,” which completes or fills in parts that are damaged, 
deteriorated, or missing; inlaying images into other images, or, conversely, 
eliminating a body or an object in an image without leaving any visible 
trace; extending an image beyond its initial frame, through a process called 
“outpainting”; choosing a frame from a video and predicting the next 
frame; taking any given video and upscaling it by increasing its frame rate 
and its definition, reaching a level of so-called super-resolution.56  

An emblematic example of this last application, which is currently pro-
liferating across the internet and may end up altering significantly our 
experience of visual documents of the past, is the upscaled versions of 
Lumière films such as L’arrivée d’un train en gare de La Ciotat (Arrival of  
a Train at La Ciotat; 1896), in which the film is transposed from the original 
sixteen frames per second to a high frame rate of sixty frames per second, 
from the original 1.33:1 format to a contemporary 16:9 format (through 
cropping), and from the original, grainy 35 mm analog film to a 4K digital 
resolution. 

In the case of all these image operations produced by GANs—translating, 
modeling, rejuvenating, aging, animating, simulating, transferring, inpaint-
ing, outpainting, predicting, upscaling—the new images that are produced 
are images from images: images resulting from the processing of the large 
quantities of images contained in the training sets. By upscaling the digital 
version of a Lumière film, for example, the GANs add to the initial images 
a series of pixels that, across various layers of algorithmic mediation, stem 
from many other images of other trains arriving in other stations. The new, 
upscaled Lumière film, in a way, inherits and absorbs within itself all these 
images, something that alters profoundly its temporal status. The upscaled 
video, which looks as if it had been shot not with a Lumière camera but 
with a much more recent digital camera, is a hybrid temporal object that 
contains, embedded in itself, pixels that are the visual traces of a series of 
temporal layers. 

The use of GANs to generate new images, instead of transforming existing 
ones, has quickly changed throughout the years. GANs were initially intro-
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duced to produce images that were similar (but not identical) to the ones of 
a given dataset. In a 2014 paper, Ian Goodfellow and his collaborators used 
GANs to generate handwritten digits, new faces, and new objects that were 
similar to the ones of the MNIST handwritten-digit dataset, the Toronto 
Face Dataset, and the CIFAR-10 small-object photograph dataset, respec-
tively. The idea was to increase the number of images that could be used for 
training image-recognition systems. 

Shortly afterward, though, GANs began to be used to generate images 
that were not necessarily highly similar to the ones of the dataset used to 
train the Discriminator. In these cases, the GAN-generated images could be 
highly “photorealistic,” hybrid, or entirely abstract, depending on the  
composition of the training sets, on the kinds of image translations that 
were performed, and on the points in the latent space that they visualized. 
Projects such as This Person Does Not Exist (Philip Wang, 2019) or 
DoppelGANger.agency (Mitra Azar, 2019) attracted a lot of attention when 
they were launched because they highlighted the capacity of new versions 
of GANs (such as StyleGAN and StyleGAN2, presented in the media as 
“artificial intelligence,” as with DeepDream) to generate highly photoreal-
istic images of faces of nonexistent people.57 The photorealistic nature of 
these images—which were soon used in advertising and to create fake pro-
files on social media platforms—raised questions about how we ought to 
understand the impact of AI-generated images on the very idea of “photog-
raphy” and a series of concepts traditionally related to it, such as “index” 
and “referent.”58 What exactly do these highly realistic images of nonexis-
tent people represent? Do they have a referent? If so, where is it located? 
How should we explain their peculiar form of photorealism? 

To answer these questions, we need to remember that GANs generate 
images out of a latent space that they have learned to explore through inter-
actions with a Discriminator trained with a specific dataset. In the case of 
the images in This Person Does Not Exist, the dataset was composed of real 
photographs of real people, which means that the “photorealism” of the 
GAN-generated images is based on various layers of referentiality. 

To begin with, these photographic “portraits” of nonexistent people 
refer—across multiple layers of algorithmic mediation—to the photographs 
of real faces that were part of the training set, and these photographs, in 
turn, refer to the real faces of the real people who were photographed. 
Then, these “portraits” refer to the categories that, within datasets such as 
ImageNet, have been used for their labeling. Finally, as with all images gen-
erated by GANs, they also refer to the specific points they visualize within 
the latent space that the GANs have learned to explore through their training. 
Different kinds of “referents” are therefore present at each of these layers. 
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The relations between the idea of “photography” and the images gener-
ated by GANs can also be analyzed from another point of view. As the artist 
and programmer Mario Klingemann suggests, these images may be consid-
ered a form of “cameraless neurophotography”; that is, as photographs or 
even “snapshots” that frame, capture, and visualize different areas of the 
latent space.59 Anadol puts forth a similar idea: in commenting on his work 
with GANs for video installations such as Unsupervised—Machine 
Hallucinations—MoMA (2022), he talks about those moments, in the train-
ing of an algorithm, called “checkpoints,” in which one has the chance “to 
see what the machine learns, and to take snapshots.”60 

In the field of contemporary art, images generated by various kinds of 
GANs appear in particularly interesting ways in the work of artists such as 
Paglen (Adversarially Evolved Hallucinations, 2017), Pierre Huyghe 
(UUmwelt, 2018), Steyerl (Power Plants, 2018; This Is the Future, 2019; 
SocialSim, 2020; Animal Spirits, 2022), and Grégory Chatonsky (Second 
Earth, 2019; I Will Resemble What You Have Been, 2020; and Complétion 
1.0, 2021). In most cases, instead of using GANs to generate photorealistic 
images, these artists choose to visualize areas of the latent space in which 
images appear blurred, hybrid, and with various digital artifacts, as if to 
emphasize both the radical otherness of the images—the feeling of seeing 
something one has never seen before—and the vague, metamorphic traces 
of images one might partially recognize.61 

The strategies according to which these GAN-generated images are used, 
though, are very different. Images from Paglen’s Adversarially Evolved 
Hallucinations, for example, were generated through a process that the 
artist himself has openly explained, as if his aim were to render the image-
generating potential of deep-learning algorithms more transparent. To produce 
the images in this work, Paglen began by establishing special training sets 
based on themes stemming from literature, philosophy, psychology, folk 
wisdom, and history, with titles such as “Interpretations of Dreams” (a col-
lection of images showing symbols from Freudian psychoanalysis), “Omens 
and Portents” (images of comets, eclipses, and other natural events histor-
ically considered as supernatural), “American Predators” (images of predatory 
animals, plants, and human beings indigenous to the United States, and  
of military hardware such as drones and stealth bombers), or “Monsters of 
Capitalism” (images of monstrous 
creatures, such as vampires, that 
have at some point been associated 
with capitalism). Once these training 
sets were established (by collecting 
images from the ImageNet dataset), 

Trevor Paglen. The Great Hall 
(Corpus: The Interpretation of 
Dreams), Adversarially Evolved 
Hallucination, 2017. Dye  
sublimation print, 32 × 40 in. 
(81.3 × 101.6 cm). © Trevor 
Paglen. Courtesy the artist; 
Altman Siegel, San Francisco; 
and Pace Gallery.
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they were fed into the Discriminator, which learned how to detect and clas-
sify images belonging to such categories. The Generator, then, began from 
random noise to produce images that were progressively closer to the ones 
in the training set, with the goal of eventually fooling the Discriminator. 
Intervening within this process, stopping the training at specific “check-
points,” Paglen chose which images to extract from the ones that the GAN 
could generate. The result of this selection are images such as The Great 
Hall (Corpus: The Interpretation of Dreams) that visualize different areas of 
the latent space.62  

GAN-generated hybrid images are central also in the work of Chatonsky, 
who describes them as the product of an “artificial imagination” (rather 
than “intelligence”) that has processed the vast, hypertrophic quantities of 
images that humans have left on the internet to then release an endless flow 
of other images out of the latent space. This, for Chatonsky, is a space with 
a “flat ontology,” in which the traditional ontological partitions that once 
structured the visible world as seen by human beings have dissolved. The 
images that visualize it are therefore fragments of a fluid, metamorphic, 
undifferentiated world in which the spectator encounters hybrid entities 
that preserve only vague traces of recognizable objects. 

Second Earth (2019) presents these images as the product of machines 
that survive in a desolate, fully mineralized landscape after human extinc-
tion. After having acquired and processed all the images that human beings 

left in servers and data centers, deep-
learning algorithms start producing other 
images that are “the hallucinations of a 
senseless machine, a monument dedicated 
to the memory of the vanished human 
species.”63 Among these images stemming 
from the latent space, one finds fragments 
of fictions, of possible futures and coun-
terfactual pasts. 

Complétion 1.0, instead, focuses on the 
peculiar, postphotographic “realism” of 
the images generated by GANs and on its 
difference from the idea of “realism” that 
has its roots in the trace-like, imprint-like, 
indexical nature of analog photographs. 
Chatonsky calls this new kind of realism 
an “inductive disrealism”: the property  
of images whose indexical nature is not 
rooted in the material contact between 

Grégory Chatonsky. Second 
Earth, 2019. Stills from video 
installation. © and courtesy  
the artist.
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light and a photosensitive surface but rather in their reference to a latent 
space that GANs explore through a form of inductive learning.64  

The question of the realistic and documentary nature of GAN-generated 
images is also raised by Steyerl’s This Is the Future (2019), a video installa-
tion conceived as an expansion of the exhibition Power Plants (2018) at the 
Serpentine Gallery in London. What interested Steyerl in the use of GAN 
imagery was, in this case, the predictive nature of deep-learning algorithms: 
the fact that they are part of a vast spectrum of predictive systems that oper-
ate across contemporary societies, introducing various forms of algorithmic 
governmentality. 

The main video presented in Steyerl’s installation, titled This Is the 
Future: A 100% Accurate Prediction, consists for the most part of images 
produced through a next-frame prediction algorithm—a neural network 
that, when given a frame from a video, is trained to predict the next frame.65 
In This Is the Future the network is presented as a living entity with its own 
(synthetic) voice and vision—“I am a neural network. This is what I see”—
and the images that document what it sees are presented as located “0.04 
seconds in the future.” They are capable of both predicting and document-
ing the future, as paradoxical as this may seem, since, as the synthetic voice 
says, they “enter into the future by slipping into the cracks between  
seconds.”66    

In all of these works the images generated by various kinds of GANs are 
not the output of completely autonomous algorithmic processes. On the 
contrary, they are always the result of a complex series of interactions 
between the artists, the programmers that in some cases collaborate with 
them, the algorithms (with their different versions, possibilities, and limi-
tations), the images that are part of the training set, and the images that were 
generated out of the latent space. 
Exploring the latent space and the 
points and trajectories within it is a 
crucial moment in the artistic 
process, so much so that, in the end 
titles of her video Animal Spirits 
(2022), Steyerl lists, among the 
many operations of which she has 
been in charge, “latent space archi-
tecture and pathmaking.” During 
the production process, what we 
see is therefore an inductive series 
of trials and errors that unfolds 
through a continuous intertwining 

Hito Steyerl. This Is the Future:  
A 100% Accurate Prediction, 2019. 
Stills from single-channel color 
video, sound, 16 min. From the 
video installation/environment 
This Is the Future (2019). © Hito 
Steyerl. Courtesy the artist and 
Andrew Kreps Gallery, New York.
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of human intentions and technical possibilities. The “authorship” of these 
GAN-generated images is therefore fundamentally distributed, spread 
across layers of actions and operations. This is true also for the most recent 
generation of deep-learning algorithms dealing with images: the text-to-
image and image-to-text models. 

The Visible and the Sayable: Prompt-Based Imaging 
The third phenomenon highlighted at the beginning of this article— 
the widespread diffusion of deep-learning algorithms that are capable of 
generating images from texts and of generating texts from images—is very 
recent. Image-to-text models have their roots in machine-vision technolo-
gies capable of analyzing, labeling, and classifying images, but they have 
been made more complex in recent years by being combined with LLMs 
trained with vast textual datasets and used for tasks of natural-language 
processing, such as text generation and translation. Text-to-image models 
were first tested in the mid-2010s (with programs such as alignDRAW) and 
then quickly developed during the next few years, mostly through different 
types of GANs, but became popular only in 2022 with the introduction  
of so-called diffusion models such as DALL-E 2, Stable Diffusion, and 
Midjourney.67 

Image-to-text models usually operate in two steps: image analysis and 
text generation. First, a CNN analyzes the image to detect, label, and clas-
sify the objects, the actions, and the spatial relations it represents. Then, 
another deep neural network connects this initial output with a linguistic 
structure. Models such as DenseCap, for example, analyze an image and 
generate captions automatically, while CLIP generates descriptions, and 
other models such as Neural Storyteller can generate short stories. GPT-4 
goes one step further: once the description of an image has been generated 
with an image-to-text model such as CLIP, the description is fed into GPT-
4, which then answers questions about the image (e.g., What would be the 
consequence of making a given change in the image? What is the meaning 
of a meme? or Why is this image funny?) or performs tasks based on it (e.g., 
generating a website from a simple drawing). 

Text-to-image models also operate in two steps: text encoding and image 
generation. A transformer model similar to the ones that are used for  
natural-language processing and translation is used to transform the input 
text into a latent representation: a series of numerical vectors associated 
with the individual words and their relations within a sentence. A diffu-
sion model then generates an image from that latent representation. 

To better understand how they work, consider the example of Stable 
Diffusion, which, unlike DALL-E 2 and Midjourney, has openly released its 
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code and model weights.68 The diffusion model operates in two phases:  
forward diffusion and reverse diffusion. The first phase, forward diffusion, 
turns the images of the dataset used for training into indistinguishable 
“noise images” (i.e., random pixels distributed within the grid-like image 
space). It does so by adding increasing levels of “noise” to each image (e.g., 
the image of a cat). The term diffusion, in this case, refers to the concept of 
diffusion in physics: the movement of particles from an area of high con-
centration to an area of low concentration, until equilibrium is reached. 

The second phase of a diffusion model is called reverse diffusion. During 
this phase, starting from the “noise images,” the model learns how to 
recover the initial images of the training set. It does this through a “noise 
predictor” that learns to predict how much noise was added to the initial 
images. This allows the model to subtract for each given “noise image” the 
layers of noise that were added, until it finds the initial image (e.g., again, 
the image of a cat). 

This double process of forward diffusion and reverse diffusion would be 
extremely slow and require very high computing power—inaccessible to 
most private users—if the images of the training set were not somehow 
compressed. The first version of Stable Diffusion was trained with images 
having a resolution of 512 by 512 pixels, which means that, keeping in 
mind that each pixel has three color channels (red, green, and blue), the 
“image space” of a 512 by 512 image is a 786,432-dimensional space.69 
Instead of operating in such high-dimensional image space, Stable 
Diffusion operates as a “latent diffusion model.” That is, both the forward 

Top: Forward diffusion  
and reverse diffusion in  
diffusion models.  
Diagram by the author. 

Bottom: From an initial  
image to a “noise image” 
through forward diffusion  
in text-to-image models.  
Diagram by the author.
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and the reverse diffusion processes happen in a compressed, lower-dimen-
sional latent space, instead of in the initial image space.70  

Stable Diffusion also makes use of another phase, called “conditioning”: 
its aim is to steer the noise predictor in such a way that, once the layers of 
noise have been subtracted, the algorithm can produce an image that is per-
ceived as being “aligned”—that is, coherent with—the textual prompts that 
were used to generate it. Text prompts are first “tokenized.” This entails 
each word of the prompt (e.g., “photo of a cat”) being associated, through a 
deep-learning model called CLIP tokenizer, with a number called a “token” 
(e.g., photo might be associated with the number 50, of with 24, a with 59, 
and cat with 239). Then, each token is “embedded”; that is, converted into 
a 768-value vector (a string of numbers indicating coordinates in a 768-
dimensional space), which contains the parameters that allow it to locate a 
given word in relation to other words of a given language (e.g., English), as 
also happens with language processing algorithms such as GPT-4, ChatGPT, 
Google Translate, and DeepL. The embeddings are then processed by a “text 
transformer” and finally fed into the noise predictor, which begins to sub-
tract layers of noise until it reaches an image that is somehow “aligned” 
with the prompts. 

The result of this complex process of forward diffusion and reverse  
diffusion, of text encoding and image generation, is that models such as 
DALL-E 2, Stable Diffusion, and Midjourney take as input natural-language 
descriptions or “prompts” and then generate as output a series of still 
images that are programmed to be different each time, even if one repeats 
the same prompts, thus promoting the idea of an infinite generativity of 
such algorithms. Further versions of these models, called text-to-video, 
make possible the generation not only of still but also moving images. In the 

Top: “Noise images” and  
the subtraction of predicted 
noise in text-to-image  
models. Diagram by the 
author. 

Bottom: Elements of the 
compression process in  
a latent-diffusion model  
of text-to-image models: 
encoder, latent space, 
decoder. Diagram by the 
author.
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near future, it will be possible to generate entire videos or films exclusively 
from textual prompts, replacing or integrating a whole series of analog or 
digital techniques of image capture, editing, and postproduction. 

Prompts are destined to become a key factor in a visual culture more and 
more based on the operation of submitting words and texts to deep-learning 
algorithms in order to explore their latent space and have images emerge 
out of it. Acting as a new kind of interface that, almost as a series of “speech 
acts,” operates a transition from natural language to images, prompts may 
consist of single words or entire phrases that give indications concerning 
content (i.e., the elements to be included or omitted from the desired 
image), composition, color, lighting, style (whether of a single artist or of an 
artistic movement), and medium (e.g., drawing, painting, animation, pho-
tography, video, including detailed specifications about camera models, 
lenses, etc.). Prompts, in other words, re-mediate previous visual media 
into a set of terms indicating material supports, devices, and operations 
(e.g., “DVD screengrab”) that can be used to generate images out of a latent 
space in which the formal properties of all these media exist as visual  
patterns that can flow from image to image.  

Prompts may also give negative indications: they can indicate qualities 
perceived as negative (“ugly,” “bad,” “deformed,” “disfigured”), qualities that 
are not usually searched for (“bad art,” “poorly drawn,” “out of focus,” “out 
of frame”), or features that are typically unwanted (“extra limbs,” “extra 
legs,” “extra arms”). A flurry of prompt tutorials available online helps users 
refine their queries and bypass, in certain cases, the absence of prompts that 
have been removed from the platforms for so-called safety reasons, through 
different forms of content moderation and prompt censorship. 

Soon after their launch, text-to-image models such as DALL-E 2, Stable 
Diffusion, and Midjourney began to proliferate across the internet and to be 
used for a wide variety of applications, some of which include operations 
previously performed by GANs, such as inpainting, outpainting, style 
transfer, and upscaling. Images generated through diffusion models quickly 
began to appear on book and magazine covers and in advertising cam-
paigns, raising questions about whether entire skill sets and even entire 
professions in the fields of illustration, graphic design, photography, and 
video—including the need to use human models in fashion advertising—
might soon be radically transformed or even entirely replaced by prompt-
based techniques.71 
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The capacity of text-to-image models to generate photorealistic imagery 
has also been used to generate all sorts of fake, hypothetical, and counter-
factual imagery, such as Donald Trump fighting with NYPD police officers 
trying to arrest him, French President Emmanuel Macron running through 
a burning Paris during the demonstrations against pension reform, and a 
video released in April 2023 by the Republican National Committee with 
the title Beat Biden showing the imaginary apocalyptic consequences of a 
second Joe Biden presidency.72 After their first widespread diffusion during 
the mid-2010s, so-called deepfakes are now widely produced through text-
to-image models, further undermining the trust in images and highlighting 
the need for new forms of image forensics and fact-checking.  

In other cases, photorealistic images generated by text-to-image models 
have been used for completely different, “documentary” purposes. In May 
2023, Amnesty International received widespread criticism for its decision 
to use AI-generated images to denounce police violence in Colombia, jus-
tifying the choice as a way of protecting the identity of protesters.73 In a  
project titled Exhibit AI—The Refugee Account, a group of Australian 
lawyers took as a starting point the thirty-two written statements of sur-
vivors of Australia’s offshore detention centers in Manus Island, Nauru, and 
Christmas Island, and, given the lack of photographic or video documenta-
tion of these centers, used the statements as prompts to generate images 
that, after being discussed with the survivors themselves, were meant to 
somehow “document” events that had not been visually recorded.74 

As was the case for CNNs and GANs, understanding the sources, the 
content, the structure, and the guiding principles of the datasets used for 
the training of text-to-image models such as DALL-E 2, Stable Diffusion, 
and Midjourney is crucial if one wants to understand the kinds of images 
they might generate, the values that might be associated with these images, 
and the operations in which they might be involved. Study of the training 
sets is also essential for understanding how they connect texts and images 
by introducing a new, algorithmic correlation between the textual and the 
visual whose effects, across contemporary visual culture, have yet to be 
fully understood. 

Text-to-image models are all trained through vast quantities of paired 
images and captions, and while OpenAI has not released information about 
which datasets were used to train DALL-E 2, we know that Stable Diffusion 
was trained with the Large-scale Artificial Intelligence Open Network 5B 
(LAION-5B), released in March 2022: a publicly available dataset derived 
from Common Crawl data freely scraped from the internet.75 

To gather the data, LAION-5B searched the crawled websites for the 
metadata that is connected to all digital images uploaded to the internet, 

Elements in the “conditioning” 
process of text-to-image  
models: text prompt, tokenizer, 
embedding, text transformer, 
noise predictor. Diagram by  
the author.
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focusing in particular on the <img> tags used to embed images in html web 
pages and treating the “alt attributes”—the “alternative texts” that provide 
a concise description of the images and replace them when they cannot be 
visualized—as captions.76 

As of this writing, LAION-5B contains five billion text-image pairs, 
sourced from across the internet from search engines, stock-image data-
bases, social-media platforms, and various websites such as Google Images, 
Shutterstock, Getty Images, Pinterest, WordPress, Flickr, Twitter, ArtStation, 
DeviantArt, and many others. The images were taken from the internet 
without permission, raising the question of whether copyright protections 
should extend to the inclusion of images in large datasets, given their  
crucial role in the generation of other images through prompts. A series of 
artists whose works ended up in LAION-5B and whose names in many 
cases were used in prompts (“in the style of . . .”) decided to sue Stability 
AI and to raise awareness through initiatives such as Have I Been Trained?77 

The criteria according to which the five billion text-image pairs con-
tained in LAION-5B are organized and filtered seem to be continually 
updated based on feedback from users and developers. After the launch  
of LAION-5B in March 2022, new criteria were added. In August 2022, 
“LAION-Aesthetics” was introduced: a subset of text-image pairs contain-
ing images with a “high predicted aesthetic score,” determined by training 
a model capable of “predict[ing] the rating people gave when they were 
asked ‘How much do you like this image from a scale of 1 to 10?’”78 Behind 
these generic “people” we actually find individuals generating and rating 
images through deep-learning text-to-image models on various platforms, 
or posting images on websites dedicated to photography contests; these 
images are then gathered in datasets such as SAC (Simulacra Aesthetic 
Captions) or AVA (Aesthetic Visual Analysis), which introduce further  
layers of selection and algorithmic processing in these “predicted” aes-
thetic criteria. 

Other upgrades had to do with generating better captions for images, 
selecting images in higher resolution, eliminating images with watermarks, 
detecting NSFW (“not safe for work”) content in images, or allowing indi-
viduals whose names and whose images were found to be in LAION-5B to 
submit a “takedown form” asking to be removed from the dataset.79 

LAION-5B shows that the content and formal properties of the images 
generated by text-to-image models are the outcome of a complex process in 
which various kinds of technical and normative criteria, statistically estab-
lished aesthetic preferences, and biases flow from the specific platforms 
from which the images have been taken (and, as vast and transnational as 
these platforms may be, they are never neutral containers), to the training 

D
ow

nloaded from
 http://direct.m

it.edu/grey/article-pdf/doi/10.1162/grey_a_00383/2177940/grey_a_00383.pdf by U
N

IV O
F C

ALIFO
R

N
IA SAN

TA BAR
BAR

A, george legrady on 26 D
ecem

ber 2023



Somaini | Algorithmic Images: Artificial Intelligence and Visual Culture 105

sets (with their various filters and criteria), all the way down to the images 
generated through the prompts. These, as Steyerl argues, can be considered 
“statistical renderings” that “shift the focus from photographic indexicality 
to stochastic discrimination,” given the importance of statistics and prob-
ability across all the algorithmic processes involved in their production.80 

We can easily predict that, in the near future, large quantities of images 
generated through diffusion models such as Stable Diffusion, DALL-E 2, 
and Midjourney, after having been uploaded to the internet and rated by 
users, will end up in new datasets that will, through a continuous feedback 
loop, contribute to the training of future models, thus increasingly promot-
ing the circulation of specific motifs and specific image styles connected to 
the different algorithms. 

That said, the training set for a model such as Stable Diffusion—or any 
other deep-learning model—is never final. Users may implement addi-
tional training to embed in the dataset new images that were not initially 
present. This opens up the possibility of using new prompts and therefore 
of extending the spectrum of possible images that the model may generate 
out of the latent space. 

An interesting example of this possibility appears in Chatonsky’s image 
series His Story (2022). Using a model called DreamBooth, the artist added, 
in the category “person,” a series of images of himself, accompanied by the 
prompt “gchatonsky.” He then used this prompt to generate images of him-
self that became part of a counterfactual autobiography in which a photo-
realistic but algorithmically generated Chatonsky appears in various spatial 
and historical contexts.  

In yet other works, Chatonsky chose other strategies to test the potential 
of diffusion models, exploring various areas of their latent space. In La 
machine 100 têtes (The Hundred Headless Machine; 2022), for example,  
he revisited Max Ernst’s first collage novel, La femme 100 têtes (The 
Hundred Headless Woman; 1929) through the help of DALL-E 2. Using 
English translations of the legends of Ernst’s uncanny, oneiric collages as 

prompts, Chatonsky generated new 
images that stem not so much from a 
surrealist, psychic automatism as from 
a kind of algorithmic automation.81 
Another work titled The Kiss (2022) 
takes the script of Alfred Hitchcock’s 
Vertigo (1958) and uses parts of it as 
prompts to generate still and moving 
images that visualize possible, AI-
generated versions of the film.82 

Grégory Chatonsky.  
Image from the series His Story, 
2022. © and courtesy the artist.
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Finally, for Counterfeits (2021), Chatonsky used both image-to-text and 
text-to-image models. Starting from well-known artworks (e.g., Pablo 
Picasso’s 1907 Demoiselles d’Avignon), a short description was generated 
through Neural Storyteller. The text was then given to another program, 
Zoetrope, which generated an image starting from the text used as a 
prompt, initiating a potentially endless series of algorithmic translations 
from images to texts to images and so on.83 

The questions raised by text-to-image models are many. Space consider-
ations allow me to highlight only some of them, and we also need to keep 
in mind that these recent algorithms are developing at a rapid pace. As in 
the case of GAN-generated images, the images generated by text-to-image 
models are not the output of completely autonomous algorithmic 
processes. An analysis of their structure and their normative criteria, the 
datasets used to train them, and the operations performed in order to acti-
vate them, shows a series of layered intertwinings between human and 
technical agencies, even though the distribution of these agencies may 
change in time (for example, human-written “alt attributes” may soon be 
replaced by forms of automated captioning). 

Each image generated by a text-to-image diffusion model is, as in the 
case of GANs, a visualization of one of the “points” (a vector) of the latent 
space generated by the model through its training. If we search for the  
“referent” of an image generated by one of these models, we are faced with 
a complex, layered referentiality that cuts across various forms of media-
tion, involving both images and words and reaching all the way up to the 
images captured or produced by human beings for other human beings and 
then uploaded to the internet, along with the words that accompanied 
them, as captions, in the “alt attributes.” Within the flat ontology of the 
latent space, every point has the same status as all other points: each is 
defined by a vector (a set of coordinates), which, in the case of diffusion 
models, results from the embedding of both images and texts. The images 
that visualize each point, though, may differ significantly in content, formal 
features, style, and so on, depending on the position of the vector in the 
multidimensional latent space. 

Another important aspect of text-to-image diffusion models is that natural 
(i.e., human) language becomes the main medium for image generation: 
what is visible is strictly correlated with what is sayable, since the images 
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are generated by textual prompts. What can or cannot be said, what can or 
cannot be written in a prompt, determines—together with the other factors 
analyzed above—what can or cannot be visualized and seen. The content 
of the “alt attributes”—together with the various limitations that models 
such as DALL-E 2, Stable Diffusion, and Midjourney have introduced in the 
use of prompts (e.g., “not safe for work”)—create boundaries that restrict 
the spectrum of images that may be generated. This introduces new areas 
of invisibility that prolong in new, still uncharted ways, the long history of 
“forbidden images.”84 

As was already the case with CNNs and GANs, the new visual culture 
that these text-to-image models are promoting is one within which images 
and words are inextricably connected. Against a whole tradition, in both 
art history and image theory, that tried to underline the autonomy of images, 
image analysis, and visual experience from texts and text-based disciplines, 
deep-learning algorithms are now leading us into a new visual landscape 
in which images and words are increasingly inseparable.85 

Opposite: Grégory Chatonsky. 
The Kiss, 2022. Still from video. 

Left: Grégory Chatonsky. Image 
from the series Counterfeits, 2021.
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Bao, Estelle Blaschke, Craig Buckley, Francesco Casetti, Jan Distelmeyer, Laura Frahm, 
Alexander Galloway, Tom Gunning, Mark Hansen, Christian Joschke, Gertrud Koch, Elisa 
Linseisen, Olivier Lugon, Pietro Montani, Ariel Rogers, and Holger Schulze for their very 
useful comments on this text. Finally, special thanks to Grégory Chatonsky, Trevor Paglen, 
and Hito Steyerl for sharing with me insights about the works discussed in this essay. 
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